On critical exponents for the Pucci's extremal operators

被引:51
|
作者
Felmer, PL
Quaas, A
机构
[1] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[2] Univ Chile, CNRS, UMR2071, Ctr Modelamiento Matemat, Santiago, Chile
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2003年 / 20卷 / 05期
关键词
critical exponents; non-divergence form operator; positive radial solution; Pucci's operator;
D O I
10.1016/S0294-1449(03)00011-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study some results on the existence of radially symmetric, non-negative solutions for the nonlinear elliptic equation M-lambda,Lambda(+) + (D(2)u) +u(p) = 0 in R-N. (*) Here N greater than or equal to 3, p > 1 and M-lambda,Lambda(+) denotes the Pucci's extremal operators with parameters 0 < lambda less than or equal to Lambda. The goal is to describe the solution set in function of the parameter p. We find critical exponents 1 < p(+)* < p(+)(p) that satisfy: (i) If 1 < p < p(+)* then there is no non-trivial radial solution of (*). (ii) If p = p(+)* then there is a unique fast decaying radial solution of (*). (iii) If P+* < p less than or equal to p(+)(p) then there is a unique pseudo-slow decaying radial solution to (*). (iv) If p(+)(p) < p then there is a unique slow decaying radial solution to (*). Similar results are obtained for the operator M-lambda,Lambda(-). (C) 2003 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:843 / 865
页数:23
相关论文
共 50 条