A Comparision Between Methods for Generating Differentially Expressed Genes from Microarray Data for Prediction of Disease

被引:0
作者
Dasgupta, Srirupa [1 ]
Saha, Goutam [1 ]
Mondal, Ritwik [2 ]
Pal, Rajat Kumar [3 ]
Chanda, Amitabha [3 ]
机构
[1] Govt Coll Engn & Leather Technol, Dept Informat Technol, Kolkata 91, India
[2] Govt Coll Engn & Ceram Technol, Dept Informat Technol, Kolkata 10, India
[3] Univ Calcutta, Dept Comp Sci & Engn, Kolkata 9, India
来源
2015 THIRD INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION, CONTROL AND INFORMATION TECHNOLOGY (C3IT) | 2015年
关键词
microarray data; differential expression; fold change; t-test; false detection ratio; random forest; SVM; KNN; classification; signature; gene-ontology;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Feature selection from microarray data has become an ever evolving area of research. Numerous techniques have widely been applied for extraction of genes which are expressed differentially in microarray data. Some of these comprise of studies related to fold-change approach, classical t-statistics and modified t-statistics. It has been found that the gene lists returned by these methods are dissimilar. In this work we compare the outputs of two different feature selection methods using three classifiers based on different algorithms namely the Random Forest Ensemble based method, the Support vector machine (SVM) and the KNN methods, using the prediction accuracy of the test datasets.
引用
收藏
页数:5
相关论文
共 18 条
[1]   Support Vector Machines and Kernels for Computational Biology [J].
Ben-Hur, Asa ;
Ong, Cheng Soon ;
Sonnenburg, Soeren ;
Schoelkopf, Bernhard ;
Raetsch, Gunnar .
PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (10)
[2]  
Breiman Leo., 2001, MACH LEARN, V45, P5, DOI [10.1007/978-3-030-62008-035, DOI 10.1007/978-3-030-62008-035, 10.1023/A:1010933404324]
[3]  
Ding L., KDD 04 SEATL US
[4]  
Golub T. R., 1999, REPORTS, V286
[5]   Rat toxicogenomic study reveals analytical consistency across microarray platforms [J].
Guo, Lei ;
Lobenhofer, Edward K. ;
Wang, Charles ;
Shippy, Richard ;
Harris, Stephen C. ;
Zhang, Lu ;
Mei, Nan ;
Chen, Tao ;
Herman, Damir ;
Goodsaid, Federico M. ;
Hurban, Patrick ;
Phillips, Kenneth L. ;
Xu, Jun ;
Deng, Xutao ;
Sun, Yongming Andrew ;
Tong, Weida ;
Dragan, Yvonne P. ;
Shi, Leming .
NATURE BIOTECHNOLOGY, 2006, 24 (09) :1162-1169
[6]   Gene selection for cancer classification using support vector machines [J].
Guyon, I ;
Weston, J ;
Barnhill, S ;
Vapnik, V .
MACHINE LEARNING, 2002, 46 (1-3) :389-422
[7]  
Jeffery Ian B, 1996, NAT GENET, V14, P457
[8]  
Joachims T., 1999, ADV KERNEL METHODS S
[9]   Fewer permutations, more accurate P-values [J].
Knijnenburg, Theo A. ;
Wessels, Lodewyk F. A. ;
Reinders, Marcel J. T. ;
Shmulevich, Ilya .
BIOINFORMATICS, 2009, 25 (12) :I161-I168
[10]  
Liu Hsi-Che, 2013, IEEE ACM T COMPUTATI