Large deviation principle for some measure-valued processes

被引:6
作者
Fatheddin, Parisa [1 ]
Xiong, Jie [2 ]
机构
[1] Univ Alabama, Dept Math, Huntsville, AL 35899 USA
[2] Univ Macau, FST, Dept Math, Macau, Peoples R China
关键词
Large deviation principle; Stochastic partial differential equation; Fleming-Viot process; Super-Brownian motion; SCHILDER-TYPE THEOREM; FLEMING-VIOT PROCESS; NEUTRAL MUTATION;
D O I
10.1016/j.spa.2014.10.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish a large deviation principle for the solutions of a class of stochastic partial differential equations with non-Lipschitz continuous coefficients. As an application, the large deviation principle is derived for super-Brownian motion and Fleming-Viot process. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:970 / 993
页数:24
相关论文
共 27 条
[11]  
Etheridge A., 2000, University Lecture Series, V20
[12]   LARGE DEVIATIONS AND QUASI-POTENTIAL OF A FLEMING-VIOT PROCESS [J].
Feng, Shui ;
Xiong, Jie .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2002, 7 :13-25
[13]   A Schilder type theorem for super-Brownian motion [J].
Fleischmann, K ;
Gartner, J ;
Kaj, I .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1996, 48 (03) :542-568
[14]  
FLEISCHMANN K, 1994, ANN I H POINCARE-PR, V30, P607
[15]  
FLEISCHMANN K, 2005, MARKOV PROCESS RELAT, V11, P519
[16]  
Li Z. H., 2011, PROBAB APPL SER
[17]   AN INFINITY-DIMENSIONAL INHOMOGENEOUS LANGEVIN EQUATION [J].
MITOMA, I .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 61 (03) :342-359
[18]  
PERKINS E. A, 1992, PROGR PROBABILITY, V29, P143, DOI DOI 10.1007/978-1-4612-0381-0_12
[19]  
Schied A, 1996, PROBAB THEORY REL, V104, P319
[20]   A large deviation principle for the Brownian snake [J].
Serlet, L .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 67 (01) :101-115