Comparison of techniques for environmental sound recognition

被引:167
作者
Cowling, M [1 ]
Sitte, R [1 ]
机构
[1] Griffith Univ, Sch Informat Technol, Gold Coast Mail Ctr, Nathan, Qld 9726, Australia
关键词
non-speech sound recognition; environmental sound recognition; audio signal processing; acoustic signal processing; joint time-frequency feature extraction;
D O I
10.1016/S0167-8655(03)00147-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a comprehensive comparative study of artificial neural networks, learning vector quantization and dynamic time warping classification techniques combined with stationary/non-stationary feature extraction for environmental sound recognition. Results show 70% recognition using mel frequency cepstral coefficients or continuous wavelet transform with dynamic time warping. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:2895 / 2907
页数:13
相关论文
共 24 条
  • [11] Daubechies I., 1992, REGIONAL C SERIES AP
  • [12] DONOHO D, 2002, WAVELAB TOOLBOX TM
  • [13] GOLDHOR RS, 1993, P IEEE INT C AC SPEE, V1, P149
  • [14] HUBBARD B, 1995, WORLD ACCORDING WAVE
  • [15] Kohonen T., 1997, Self-organizing Maps, V2nd ed.
  • [16] LILLY B, 2000, THESIS GRIFFITH U NA
  • [17] LIU L, 1999, THESIS U MARYLAND CO
  • [18] Marques J, 1999, STUDY MUSICAL INSTRU
  • [19] MARTIN KD, 1999, THESIS MIT US
  • [20] ORR M, 2001, P 7 AUSTR NZ INT INF, P341