Comparison of techniques for environmental sound recognition

被引:167
作者
Cowling, M [1 ]
Sitte, R [1 ]
机构
[1] Griffith Univ, Sch Informat Technol, Gold Coast Mail Ctr, Nathan, Qld 9726, Australia
关键词
non-speech sound recognition; environmental sound recognition; audio signal processing; acoustic signal processing; joint time-frequency feature extraction;
D O I
10.1016/S0167-8655(03)00147-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a comprehensive comparative study of artificial neural networks, learning vector quantization and dynamic time warping classification techniques combined with stationary/non-stationary feature extraction for environmental sound recognition. Results show 70% recognition using mel frequency cepstral coefficients or continuous wavelet transform with dynamic time warping. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:2895 / 2907
页数:13
相关论文
共 24 条
[1]  
[Anonymous], 2000, SPEECH AUDIO SIGNAL
[2]  
[Anonymous], NETLAB ALGORITHMS PA
[3]  
[Anonymous], AUTOMATIC SPEECH SPE
[4]   Computer identification of musical instruments using pattern recognition with cepstral coefficients as features [J].
Brown, JC .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1999, 105 (03) :1933-1941
[5]  
CASTRO MJ, 1993, P EUR C SPEECH COMM, V3, P1599
[6]  
Cohen L., 1995, TIME FREQUENCY ANAL
[7]  
COWLING M, 2000, P MATL US C MELB AUS
[8]  
COWLING M, 2002, P DSPCS 2002 MANL AU, V5
[9]  
Cowling M, 2002, ADV SIGNAL PROCESSIN
[10]  
COWLING M, 2001, P ICICS 2001 SING