The index theorem in QCD with a finite cut-off

被引:409
作者
Hasenfratz, P
Laliena, V
Niedermayer, F
机构
[1] Univ Bern, Inst Theoret Phys, CH-3012 Bern, Switzerland
[2] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
关键词
D O I
10.1016/S0370-2693(98)00315-3
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The fixed point Dirac operator on the lattice has exact chiral zero modes on topologically non-trivial gauge field configurations independently whether these configurations are smooth, or coarse. The relation n(L) - n(R) = Q(FP) where n(L) (n(R)) is che number of left (right)-handed zero modes and Q(FP) is the fixed point topological charge holds not only in the continuum limit, but also at finite cut-off values. The fixed point action. which is determined by classical equations. is local, has no doublers and complies with the no-go theorems by being chirally non-symmetric. The index theorem is reproduced exactly, nevertheless. In addition, the fixed point Dirac operator has no small real eigenvalues except those at zero, i.e. there are no 'exceptional configurations' (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:125 / 131
页数:7
相关论文
共 28 条
  • [11] THE CLASSICALLY PERFECT FIXED-POINT ACTION FOR SU(3) GAUGE-THEORY
    DEGRAND, T
    HASENFRATZ, A
    HASENFRATZ, P
    NIEDERMAYER, F
    [J]. NUCLEAR PHYSICS B, 1995, 454 (03) : 587 - 614
  • [12] EDWARDS RG, HEPLAT9711029
  • [13] Quantum fluctuations versus topology - a study in U(1)(2) lattice gauge theory
    Gattringer, CR
    Hip, I
    Lang, CB
    [J]. PHYSICS LETTERS B, 1997, 409 (1-4) : 371 - 376
  • [14] GATTRINGER CR, HEPLATT9712015
  • [15] A REMNANT OF CHIRAL SYMMETRY ON THE LATTICE
    GINSPARG, PH
    WILSON, KG
    [J]. PHYSICAL REVIEW D, 1982, 25 (10): : 2649 - 2657
  • [16] PERFECT LATTICE ACTION FOR ASYMPTOTICALLY FREE THEORIES
    HASENFRATZ, P
    NIEDERMAYER, F
    [J]. NUCLEAR PHYSICS B, 1994, 414 (03) : 785 - 814
  • [17] HASENFRATZ P, 1997, IN PRESS NATO ASI CO
  • [18] HASENFRATZ P, HEPLAT9709110
  • [19] HASENFRATZ W, UNPUB P ADV SCH NONP
  • [20] KUNSZT P, HEPLAT9706019