Predicting the immune landscape of invasive breast carcinoma based on the novel signature of immune-related lncRNA

被引:6
作者
Shen, Shuang [1 ]
Chen, Xin [1 ]
Hu, Xiaochi [1 ]
Huo, Jinlong [1 ]
Luo, Libo [1 ]
Zhou, Xuezhi [1 ]
机构
[1] Zunyi Med Univ, Dept Breast & Thyroid Surg, Affiliated Hosp 3, Peoples Hosp Zunyi 1, Zunyi 563000, Guizhou, Peoples R China
关键词
breast cancer; immunotherapy; LncRNA; risk score; TCGA; tumor-infiltrating immune; EXPRESSION SIGNATURE; PD-L1; EXPRESSION; CANCER; CHEMOTHERAPY; PROGNOSIS; CELLS; RISK;
D O I
10.1002/cam4.4189
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background The composition of the population of immune-related long non-coding ribonucleic acid (irlncRNA) generates a signature, irrespective of expression level, with potential value in predicting the survival status of patients with invasive breast carcinoma. Methods The current study uses univariate analysis to identify differentially expressed irlncRNA (DEirlncRNA) pairs from RNA-Seq data from The Cancer Genome Atlas (TCGA). 36 pairs of DEirlncRNA pairs were identified. Using various algorithms to construct a model, we have compared the area under the curve and calculated the 5-year curve of Akaike information criterion (AIC) values, which allows determination of the threshold indicating the maximum value for differentiation. Through cut-off point to establish the optimal model for distinguishing high-risk or low-risk groups among breast cancer patients. We assigned individual patients with invasive breast cancer to either high risk or low risk groups depending on the cut-off point, re-evaluated the tumor immune cell infiltration, the effectiveness of chemotherapy, immunosuppressive biomarkers, and immunotherapy. Results After re-assessing patients according to the threshold, we demonstrated an effective means of distinguish the severity of the disease, and identified patients with different clinicopathological characteristics, specific tumor immune infiltration states, high sensitivity to chemotherapy,wellpredicted response to immunotherapy and thus a more favorable survival outcome. Conclusions The current study presents novel findings regarding the use of irlncRNA without the need to predict precise expression levels in the prognosis of breast cancer patients and to indicate their suitability for anti-tumor immunotherapy.
引用
收藏
页码:6561 / 6575
页数:15
相关论文
共 48 条
[1]  
Aran D, 2020, METHODS MOL BIOL, V2120, P263, DOI 10.1007/978-1-0716-0327-7_19
[2]   xCell: digitally portraying the tissue cellular heterogeneity landscape [J].
Aran, Dvir ;
Hu, Zicheng ;
Butte, Atul J. .
GENOME BIOLOGY, 2017, 18
[3]   PDL1 expression in inflammatory breast cancer is frequent and predicts for the pathological response to chemotherapy [J].
Bertucci, Francois ;
Finetti, Pascal ;
Colpaert, Cecile ;
Mamessier, Emilie ;
Parizel, Maxime ;
Dirix, Luc ;
Viens, Patrice ;
Birnbaum, Daniel ;
van Laere, Steven .
ONCOTARGET, 2015, 6 (15) :13506-13519
[4]   ImmPort, toward repurposing of open access immunological assay data for translational and clinical research [J].
Bhattacharya, Sanchita ;
Dunn, Patrick ;
Thomas, Cristel G. ;
Smith, Barry ;
Schaefer, Henry ;
Chen, Jieming ;
Hu, Zicheng ;
Zalocusky, Kelly A. ;
Shankar, Ravi D. ;
Shen-Orr, Shai S. ;
Thomson, Elizabeth ;
Wiser, Jeffrey ;
Butte, Atul J. .
SCIENTIFIC DATA, 2018, 5
[5]   Long noncoding RNA CCAT2 promotes breast tumor growth by regulating the Wnt signaling pathway [J].
Cai, Yi ;
He, Jing ;
Zhang, Dong .
ONCOTARGETS AND THERAPY, 2015, 8 :2657-2664
[6]   Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade [J].
Charoentong, Pornpimol ;
Finotello, Francesca ;
Angelova, Mihaela ;
Mayer, Clemens ;
Efremova, Mirjana ;
Rieder, Dietmar ;
Hackl, Hubert ;
Trajanoski, Zlatko .
CELL REPORTS, 2017, 18 (01) :248-262
[7]  
Chen BB, 2018, METHODS MOL BIOL, V1711, P243, DOI 10.1007/978-1-4939-7493-1_12
[8]   Immune-related IncRNA LINC00944 responds to variations in ADAR1 levels and it is associated with breast cancer prognosis [J].
de Santiago, Pamela R. ;
Blanco, Alejandro ;
Morales, Fernanda ;
Marcelain, Katherine ;
Harismendy, Olivier ;
Herrera, Marcela Sjoberg ;
Armisen, Ricardo .
LIFE SCIENCES, 2021, 268
[9]   Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy [J].
Denkert, Carsten ;
von Minckwitz, Gunter ;
Darb-Esfahani, Silvia ;
Lederer, Bianca ;
Heppner, Barbara I. ;
Weber, Karsten E. ;
Budczies, Jan ;
Huober, Jens ;
Klauschen, Frederick ;
Furlanetto, Jenny ;
Schmitt, Wolfgang D. ;
Blohmer, Jens-Uwe ;
Karn, Thomas ;
Pfitzner, Berit M. ;
Kuemmel, Sherko ;
Engels, Knut ;
Schneeweiss, Andreas ;
Hartmann, Arndt ;
Noske, Aurelia ;
Fasching, Peter A. ;
Jackisch, Christian ;
van Mackelenbergh, Marion ;
Sinn, Peter ;
Schem, Christian ;
Hanusch, Claus ;
Untch, Michael ;
Loibl, Sibylle .
LANCET ONCOLOGY, 2018, 19 (01) :40-50
[10]   Cancer statistics for African Americans, 2019 [J].
DeSantis, Carol E. ;
Miller, Kimberly D. ;
Sauer, Ann Goding ;
Jemal, Ahmedin ;
Siegel, Rebecca L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (03) :211-233