Bistable Helmholtz solitons in cubic-quintic materials

被引:28
作者
Christian, J. M. [1 ]
McDonald, G. S.
Chamorro-Posada, P.
机构
[1] Univ Salford, Joule Phys Lab, Sch Comp Sci & Engn, Mat Res Inst, Salford M5 4WT, Lancs, England
[2] Univ Valladolid, ETSI Telecomunicac, Dept Teoria Senal & Comunicac Ingn Telemat, E-47071 Valladolid, Spain
来源
PHYSICAL REVIEW A | 2007年 / 76卷 / 03期
关键词
D O I
10.1103/PhysRevA.76.033833
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a nonlinear Helmholtz equation for modeling the evolution of broad optical beams in media with a cubic-quintic intensity-dependent refractive index. This type of nonlinearity is appropriate for some semiconductor materials, glasses, and polymers. Exact analytical soliton solutions are presented that describe self-trapped nonparaxial beams propagating at any angle with respect to the reference direction. These spatially symmetric solutions are, to the best of our knowledge, the first bistable Helmholtz solitons to be derived. Accompanying conservation laws (both integral and particular forms) are also reported. Numerical simulations investigate the stability of the solitons, which appear to be remarkably robust against perturbations.
引用
收藏
页数:9
相关论文
共 91 条
[1]   THEORY OF LIGHT-BEAM PROPAGATION AT NONLINEAR INTERFACES .2. MULTIPLE-PARTICLE AND MULTIPLE-INTERFACE EXTENSIONS [J].
ACEVES, AB ;
MOLONEY, JV ;
NEWELL, AC .
PHYSICAL REVIEW A, 1989, 39 (04) :1828-1840
[2]   THEORY OF LIGHT-BEAM PROPAGATION AT NONLINEAR INTERFACES .1. EQUIVALENT-PARTICLE THEORY FOR A SINGLE INTERFACE [J].
ACEVES, AB ;
MOLONEY, JV ;
NEWELL, AC .
PHYSICAL REVIEW A, 1989, 39 (04) :1809-1827
[3]   FEMTOSECOND DYNAMICS OF SEMICONDUCTOR-DOPED GLASSES USING A NEW SOURCE OF INCOHERENT-LIGHT [J].
ACIOLI, LH ;
GOMES, ASL ;
HICKMANN, JM ;
DEARAUJO, CB .
APPLIED PHYSICS LETTERS, 1990, 56 (23) :2279-2281
[4]   Hamiltonian-versus-energy diagrams in soliton theory [J].
Akhmediev, N ;
Ankiewicz, A ;
Grimshaw, R .
PHYSICAL REVIEW E, 1999, 59 (05) :6088-6096
[5]   Energy-exchange interactions between colliding vector solitons [J].
Anastassiou, C ;
Segev, M ;
Steiglitz, K ;
Giordmaine, JA ;
Mitchell, M ;
Shih, MF ;
Lan, S ;
Martin, J .
PHYSICAL REVIEW LETTERS, 1999, 83 (12) :2332-2335
[6]   Spatial soliton angular deflection logic gates [J].
Blair, S ;
Wagner, K .
APPLIED OPTICS, 1999, 38 (32) :6749-6772
[7]   Cascadable spatial-soliton logic gates [J].
Blair, S ;
Wagner, K .
APPLIED OPTICS, 2000, 39 (32) :6006-6018
[8]   ASYMMETRIC SPATIAL SOLITON DRAGGING [J].
BLAIR, S ;
WAGNER, K ;
MCLEOD, R .
OPTICS LETTERS, 1994, 19 (23) :1943-1945
[9]   Nonparaxial one-dimensional spatial solitons [J].
Blair, S .
CHAOS, 2000, 10 (03) :570-583
[10]   Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses [J].
Boudebs, G ;
Cherukulappurath, S ;
Leblond, H ;
Troles, J ;
Smektala, F ;
Sanchez, F .
OPTICS COMMUNICATIONS, 2003, 219 (1-6) :427-433