Random Attractors for Stochastic Retarded 2D-Navier-Stokes Equations with Additive Noise

被引:4
作者
Jia, Xiaoyao [1 ]
Ding, Xiaoquan [1 ]
机构
[1] Henan Univ Sci & Technol, Math & Stat Sch, 263 Kai Yuan Rd, Luoyang 471023, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
NAVIER-STOKES EQUATIONS; UPPER SEMICONTINUITY;
D O I
10.1155/2018/3105239
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the existence and the upper semicontinuity of a pullback attractor for stochastic retarded 2D-Navier-Stokes equation on a bounded domain are obtained. We first transform the stochastic equation into a random equation and then obtain the existence of a random attractor for random equation. Then conjugation relation between two random dynamical systems implies the existence of a random attractor for the stochastic equation. At last, we get the upper semicontinuity of random attractor.
引用
收藏
页数:14
相关论文
共 27 条
[1]  
[Anonymous], 1984, Navier-Stokes equations, theory and numerical analysis
[2]  
Arnold L., 1998, Random Dynamical Systems, V1
[3]   Random attractors for stochastic 2D-Navier-Stokes equations in some unbounded domains [J].
Brzezniak, Z. ;
Caraballo, T. ;
Langa, J. A. ;
Li, Y. ;
Lukaszewicz, G. ;
Real, J. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (11) :3897-3919
[4]   Upper semicontinuity of attractors for small random perturbations of dynamical systems [J].
Caraballo, T ;
Langa, JA ;
Robinson, JC .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1998, 23 (9-10) :1557-1581
[5]   Exponentially stable stationary solutions for stochastic evolution equations and their perturbation [J].
Caraballo, T ;
Kloeden, PE ;
Schmalfuss, B .
APPLIED MATHEMATICS AND OPTIMIZATION, 2004, 50 (03) :183-207
[6]   Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays [J].
Caraballo, T ;
Real, J .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2040) :3181-3194
[7]   Attractors for stochastic lattice dynamical systems with a multiplicative noise [J].
Caraballo, Tomas ;
Lu, Kening .
FRONTIERS OF MATHEMATICS IN CHINA, 2008, 3 (03) :317-335
[8]  
Chueshov I., 2002, MONOTONE RANDOM SYST
[9]  
CONSTANTIN P, 1988, Navier-stokes equations
[10]   Random attractors [J].
Crauel H. ;
Debussche A. ;
Flandoli F. .
Journal of Dynamics and Differential Equations, 1997, 9 (2) :307-341