SOME CLASSES OF ORTHOGONAL LATIN HYPERCUBE DESIGNS

被引:40
作者
Georgiou, Stelios D. [1 ]
Efthimiou, Ifigenia [1 ]
机构
[1] Univ Aegean, Dept Stat & Actuarial Financial Math, Karlovassi 83200, Samos, Greece
关键词
Circulant matrices; computer experiments; orthogonal Latin hypercube design; periodic autocorrelation function;
D O I
10.5705/ss.2012.142
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Latin hypercube designs (LHDs) are commonly used in designing computer experiments. A number of methods have been proposed to construct LHDs with orthogonality among the main-effects. In this paper, we propose a new method for constructing orthogonal LHDs (OLHDs) with 12, 16, 20, and 24 factors having a flexible run size. Moreover, using these designs we provide new multiplication methods and further constructions for OLHDs. These constructions lead to infinite families of OLHD with many factors. For example, we show that when an OLHD(n,m) exists, there also exist OLHDs with (runs, factors) is an element of {(24n, 12m), (32n, 16m), (40n, 20m), (48n, 24m), (24n + 1, 12m), (32n + 1, 16m), (40n + 1, 20m), (48n + 1, 24m)}.
引用
收藏
页码:101 / 120
页数:20
相关论文
共 14 条
[1]   Optimal and orthogonal Latin hypercube designs for computer experiments [J].
Butler, NA .
BIOMETRIKA, 2001, 88 (03) :847-857
[2]   Efficient nearly orthogonal and space-filling Latin hypercubes [J].
Cioppa, Thomas M. ;
Lucas, Thomas W. .
TECHNOMETRICS, 2007, 49 (01) :45-55
[3]   Block-circulant matrices for constructing optimal Latin hypercube designs (vol 141, pg 1933, 2011) [J].
Georgiou, S. D. ;
Stylianou, S. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (06) :1623-1623
[4]   Block-circulant matrices for constructing optimal Latin hypercube designs [J].
Georgiou, S. D. ;
Stylianou, S. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (05) :1933-1943
[5]   Orthogonal Latin hypercube designs from generalized orthogonal designs [J].
Georgiou, Stelios D. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (04) :1530-1540
[6]  
Geramita A., 1979, Orthogonal Designs: Quadratic Forms and Hadamard Matrices
[7]  
Kharaghani H, 2000, J COMB DES, V8, P166, DOI 10.1002/(SICI)1520-6610(2000)8:3<166::AID-JCD2>3.0.CO
[8]  
2-R
[9]   A NEW AND FLEXIBLE METHOD FOR CONSTRUCTING DESIGNS FOR COMPUTER EXPERIMENTS [J].
Lin, C. Devon ;
Bingham, Derek ;
Sitter, Randy R. ;
Tang, Boxin .
ANNALS OF STATISTICS, 2010, 38 (03) :1460-1477
[10]   EXPLORATORY DESIGNS FOR COMPUTATIONAL EXPERIMENTS [J].
MORRIS, MD ;
MITCHELL, TJ .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1995, 43 (03) :381-402