A generalization of Menon's identity with Dirichlet characters

被引:10
作者
Li, Yan [1 ]
Hu, Xiaoyu [1 ]
Kim, Daeyeoul [2 ,3 ]
机构
[1] China Agr Univ, Dept Appl Math, Beijing 100083, Peoples R China
[2] Chonbuk Natl Univ, Dept Math, 567 Baekje Daero, Jeonju Si 54896, Jeollabuk Do, South Korea
[3] Chonbuk Natl Univ, Inst Pure & Appl Math, 567 Baekje Daero, Jeonju Si 54896, Jeollabuk Do, South Korea
关键词
Menon's identity; greatest common divisor; Dirichlet character; divisor function; Euler's totient function; congruence;
D O I
10.1142/S1793042118501579
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The classical Menon's identity (P. K. Menon, On the sum Sigma(a - 1, n) [(a, n) = 1] J. Indian Math. Soc. (N.S.) 29 (1965) 155-163] states that Sigma(a is an element of Zn*) gcd (a-1, n) = phi(n)sigma(0)(n), where for a positive integer n, Z(n)* is the group of units of the ring Z(n) = Z/nZ, gcd(, ) represents the greatest common divisor, phi(n) is the Euler's totient function and sigma(k)(n) = Sigma(d vertical bar n) d(k) is the divisor function. In this paper, we generalize Menon's identity with Dirichlet characters in the following way: [GRAPHICS] gcd (a - 1, b(1), ..., b(k), n)chi(a) = phi(n)sigma(k)(n/d), where k is a non-negative integer and chi is a Dirichlet character modulo n whose conductor is d. Our result can be viewed as an extension of Zhao and Cao's result [Another generalization of Menon's identity, Int. J. Number Theory 13(9) (2017) 2373-2379] to k > 0. It can also be viewed as an extension of Sury's result [Some number-theoretic identities from group actions, Rend. Circ. Mat. Palermo 58 (2009) 99-108] to Dirichlet characters.
引用
收藏
页码:2631 / 2639
页数:9
相关论文
共 16 条
[1]  
Haukkanen P., 1996, PORT MATH, V53, P331
[2]  
Haukkanen P., 1997, Indian J. Math., V39, P37
[3]  
Haukkanen P., 2005, AEQUATIONES MATH, V70, P240, DOI DOI 10.1007/S00010-005-2805-7
[4]   Menon-type identities with additive characters [J].
Li, Yan ;
Kim, Daeyeoul .
JOURNAL OF NUMBER THEORY, 2018, 192 :373-385
[5]   Menon-type identities derived from actions of subgroups of general linear groups [J].
Li, Yan ;
Kim, Daeyeoul .
JOURNAL OF NUMBER THEORY, 2017, 179 :97-112
[6]   A Menon-type identity with many tuples of group of units in residually finite Dedekind domains [J].
Li, Yan ;
Kim, Daeyeoul .
JOURNAL OF NUMBER THEORY, 2017, 175 :42-50
[7]  
Menon PKesava, 1965, The Journal of the Indian Mathematical Society, V29, P155
[8]   A Menon-type identity in residually finite Dedekind domains [J].
Miguel, C. .
JOURNAL OF NUMBER THEORY, 2016, 164 :43-51
[9]   Menon's identity in residually finite Dedekind domains [J].
Miguel, C. .
JOURNAL OF NUMBER THEORY, 2014, 137 :179-185
[10]  
Ramanujan S., 1918, Trans. Camb. Phil. Soc., V22, P259