Codimension-two bifurcation analysis of a discrete predator-prey model with nonmonotonic functional response

被引:23
作者
Chen, Qiaoling [1 ]
Teng, Zhidong [2 ]
机构
[1] Xian Polytech Univ, Sch Sci, Xian, Shaanxi, Peoples R China
[2] Xinjiang Univ, Coll Math & Syst Sci, Urumqi, Peoples R China
基金
中国国家自然科学基金;
关键词
Discrete predator-prey model; codimension-2; bifurcations; chaos; maximum Lyapunov exponents; LOTKA-VOLTERRA SYSTEMS; GROUP DEFENSE; PERIODIC-SOLUTIONS; EPIDEMIC MODEL; PERMANENCE; RESONANCE; EXISTENCE; DYNAMICS;
D O I
10.1080/10236198.2017.1395418
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate dynamical behaviours of a discrete predator-prey model with nonmonotonic functional response. Codimension-2 bifurcations associated with 1: 2, 1: 3 and 1: 4 resonances are analyzed by using bifurcation theory. Codimension-2 bifurcation diagrams, maximum Lyapunov exponents diagrams and phase portraits, which not only illustrate the validity of the theoretical results but also display some interesting complex dynamical behaviours, are obtained by numerical simulations.
引用
收藏
页码:2093 / 2115
页数:23
相关论文
共 37 条
[1]  
Agarwal R.P., 2000, MONOGRAPHS TXB PURE, V228
[2]   Chaotic dynamics of a discrete prey-predator model with Holling type II [J].
Agiza, H. N. ;
ELabbasy, E. M. ;
EL-Metwally, H. ;
Elsadany, A. A. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (01) :116-129
[3]  
Algaba A, 2005, Commun Nonlinear Sci Numer Simul, V10, P169
[4]  
[Anonymous], 1998, ELEMENTS APPL BIFURC, DOI DOI 10.1007/B98848
[5]   Existence of periodic solutions in predator-prey and competition dynamic systems [J].
Bohner, Martin ;
Fan, Meng ;
Zhang, Jimin .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2006, 7 (05) :1193-1204
[6]   Allee effect in a discrete-time predator-prey system [J].
Celik, Canan ;
Duman, Oktay .
CHAOS SOLITONS & FRACTALS, 2009, 40 (04) :1956-1962
[7]   The existence of codimension-two bifurcation in a discrete SIS epidemic model with standard incidence [J].
Chen, Qiaoling ;
Teng, Zhidong ;
Wang, Lei ;
Jiang, Haijun .
NONLINEAR DYNAMICS, 2013, 71 (1-2) :55-73
[8]   Detailed analysis of a nonlinear prey-predator model [J].
Danca, M ;
Codreanu, S ;
Bako, B .
JOURNAL OF BIOLOGICAL PHYSICS, 1997, 23 (01) :11-20
[9]  
DAVIDOWICZ P, 1988, Limnologica, V19, P21
[10]  
Freedman H. I., 1980, MONOGRAPHS TXB PURE, V57