APPROXIMATION BY k-TH ORDER MODIFICATIONS OF SZASZ-MIRAKYAN OPERATORS

被引:14
作者
Acar, Tuncer [1 ]
Aral, Ali [1 ]
Rasa, Ioan [2 ]
机构
[1] Kirikkale Univ, Fac Sci & Arts, Dept Math, TR-71450 Yahsihan, Kirikkale, Turkey
[2] Tech Univ Cluj Napoca, Cluj Napoca, Romania
关键词
Szasz-Mirakyan operators; Kantorovich operators; weighted modulus of continuity; quantitative Voronovskaya theorem; simultaneous approximation; THEOREMS;
D O I
10.1556/012.2016.53.3.1339
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the k-th order Kantorovich type modication of Szasz-Mirakyan operators. We first establish explicit formulas giving the images of monomials and the moments up to order six. Using this modification, we present a quantitative Voronovskaya theorem for differentiated Szasz-Mirakyan operators in weighted spaces. The approximation properties such as rate of convergence and simultaneous approximation by the new constructions are also obtained.
引用
收藏
页码:379 / 398
页数:20
相关论文
共 20 条
[1]  
Acar T., GEORGIAN MA IN PRESS
[2]   Approximation by modified Szasz-Durrmeyer operators [J].
Acar, Tuncer ;
Ulusoy, Gulsum .
PERIODICA MATHEMATICA HUNGARICA, 2016, 72 (01) :64-75
[3]   The new forms of Voronovskaya's theorem in weighted spaces [J].
Acar, Tuncer ;
Aral, Ali ;
Rasa, Ioan .
POSITIVITY, 2016, 20 (01) :25-40
[4]   Asymptotic Formulas for Generalized Szasz-Mirakyan Operators [J].
Acar, Tuncer .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 263 :233-239
[5]   On Pointwise Convergence of q-Bernstein Operators and Their q-Derivatives [J].
Acar, Tuncer ;
Aral, Ali .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2015, 36 (03) :287-304
[7]  
Butzer P. L., 2009, COMM MATH, V49, P33
[8]   On the convergence of derivatives of Bernstein approximation [J].
Floater, MS .
JOURNAL OF APPROXIMATION THEORY, 2005, 134 (01) :130-135
[9]  
Gonska H., 2010, GEN MATH, V18, P45
[10]   General Voronovskaya and Asymptotic Theorems in Simultaneous Approximation [J].
Gonska, Heiner ;
Paltanea, Radu .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2010, 7 (01) :37-49