Non-Abelian statistics and topological quantum information processing in 1D wire networks

被引:1094
作者
Alicea, Jason [1 ]
Oreg, Yuval [2 ]
Refael, Gil [3 ]
von Oppen, Felix [4 ,5 ]
Fisher, Matthew P. A. [3 ,6 ]
机构
[1] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
[2] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel
[3] CALTECH, Dept Phys, Pasadena, CA 91125 USA
[4] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
[5] Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany
[6] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/NPHYS1915
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The synthesis of a quantum computer remains an ongoing challenge in modern physics. Whereas decoherence stymies most approaches, topological quantum computation schemes evade decoherence at the hardware level by storing quantum information non-locally. Here we establish that a key operation-braiding of non-Abelian anyons-can be implemented using one-dimensional semiconducting wires. Such wires can be driven into a topological phase supporting long-sought particles known as Majorana fermions that can encode topological qubits. We show that in wire networks, Majorana fermions can be meaningfully braided by simply adjusting gate voltages, and that they exhibit non-Abelian statistics like vortices in a p + ip superconductor. We propose experimental set-ups that enable probing of the Majorana fusion rules and the efficient exchange of arbitrary numbers of Majorana fermions. This work should open a new direction in topological quantum computation that benefits from physical transparency and experimental feasibility.
引用
收藏
页码:412 / 417
页数:6
相关论文
共 35 条
[1]   Majorana fermions in a tunable semiconductor device [J].
Alicea, Jason .
PHYSICAL REVIEW B, 2010, 81 (12)
[2]   Implementing Arbitrary Phase Gates with Ising Anyons [J].
Bonderson, Parsa ;
Clarke, David J. ;
Nayak, Chetan ;
Shtengel, Kirill .
PHYSICAL REVIEW LETTERS, 2010, 104 (18)
[3]   Measurement-only topological quantum computation [J].
Bonderson, Parsa ;
Freedman, Michael ;
Nayak, Chetan .
PHYSICAL REVIEW LETTERS, 2008, 101 (01)
[4]  
Bonderson Parsa., 2010, A Blueprint for a Topologically Fault-tolerant Quantum Computer
[5]   Universal quantum computation with ideal Clifford gates and noisy ancillas [J].
Bravyi, S ;
Kitaev, A .
PHYSICAL REVIEW A, 2005, 71 (02)
[6]   OSCILLATORY EFFECTS AND THE MAGNETIC-SUSCEPTIBILITY OF CARRIERS IN INVERSION-LAYERS [J].
BYCHKOV, YA ;
RASHBA, EI .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1984, 17 (33) :6039-6045
[7]   Topologically protected qubits from a possible non-Abelian fractional quantum Hall state [J].
Das Sarma, S ;
Freedman, M ;
Nayak, C .
PHYSICAL REVIEW LETTERS, 2005, 94 (16)
[8]   Tunable supercurrent through semiconductor nanowires [J].
Doh, YJ ;
van Dam, JA ;
Roest, AL ;
Bakkers, EPAM ;
Kouwenhoven, LP ;
De Franceschi, S .
SCIENCE, 2005, 309 (5732) :272-275
[9]   SPIN-ORBIT COUPLING EFFECTS IN ZINC BLENDE STRUCTURES [J].
DRESSELHAUS, G .
PHYSICAL REVIEW, 1955, 100 (02) :580-586
[10]   SUPERSELECTION SECTORS WITH BRAID GROUP STATISTICS AND EXCHANGE ALGEBRAS .1. GENERAL-THEORY [J].
FREDENHAGEN, K ;
REHREN, KH ;
SCHROER, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 125 (02) :201-226