Implementing a variational data assimilation system in an operational 1/4 degree global ocean model

被引:154
作者
Waters, Jennifer [1 ]
Lea, Daniel J. [1 ]
Martin, Matthew J. [1 ]
Mirouze, Isabelle [1 ]
Weaver, Anthony [1 ]
While, James [1 ]
机构
[1] Met Off, Exeter EX1 3PB, Devon, England
基金
英国自然环境研究理事会;
关键词
operational oceanography; data assimilation; 3DVAR; TEMPERATURE; CIRCULATION; COVARIANCE;
D O I
10.1002/qj.2388
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This article describes the implementation of an incremental first guess at an appropriate time three-dimensional variational (3DVAR) data assimilation scheme, NEMOVAR, in the Met Office's operational 1/4 degree global ocean model. NEMOVAR assimilates observations of sea-surface temperature (SST), sea-surface height (SSH), in situ temperature and salinity profiles and sea ice concentration. The Met Office is the first centre to implement NEMOVAR at 1/4 degree and the required developments are discussed, with particular focus on the specification of the background-error covariances. Background-error correlations in NEMOVAR are modelled using a diffusion operator. The horizontal background-error correlations for temperature, salinity and sea ice concentration are parametrized using the Rossby radius, which produces relatively short correlation length-scales at mid to high latitudes, while a flow-dependent mixed-layer depth parametrization is used to define the vertical length-scales for the 3D variables. Results from a one-year reanalysis with NEMOVAR are presented and compared with the preceding operational data assimilation scheme at the Met Office. NEMOVAR is shown to provide significant improvements to SST, SSH and sea ice concentration fields, with the largest improvements seen in regions of high variability such as eddy shedding and frontal regions and the marginal ice zone. This improvement is associated with shorter correlation length-scales in the extratropics and an improved fit to observations in NEMOVAR. Some degradation to subsurface temperature and salinity fields where data are sparse is identified and this will be the focus of future improvements to the system.
引用
收藏
页码:333 / 349
页数:17
相关论文
共 42 条
[1]   The ECMWF ocean analysis system: ORA-S3 [J].
Balmaseda, Magdalena A. ;
Vidard, Arthur ;
Anderson, David L. T. .
MONTHLY WEATHER REVIEW, 2008, 136 (08) :3018-3034
[2]   Evaluation of the ECMWF ocean reanalysis system ORAS4 [J].
Balmaseda, Magdalena Alonso ;
Mogensen, Kristian ;
Weaver, Anthony T. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2013, 139 (674) :1132-1161
[3]  
Blockley EW., 2013, GEOSCI MODEL DEV DIS, V6, P6219, DOI DOI 10.5194/GMDD-6-6219-2013
[4]  
Bloom SC, 1996, MON WEATHER REV, V124, P1256, DOI 10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO
[5]  
2
[6]   Data assimilation for marine monitoring and prediction:: The MERCATOR operational assimilation systems and the MERSEA developments [J].
Brasseur, P. ;
Bahurel, P. ;
Bertino, L. ;
Birol, F. ;
Brankart, J. -M. ;
Ferry, N. ;
Losa, S. ;
Remy, E. ;
Schroeter, J. ;
Skachko, S. ;
Testut, C. -E. ;
Tranchant, B. ;
Van Leeuwen, P. J. ;
Verron, J. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2005, 131 (613) :3561-3582
[7]   Altimetric assimilation with water property conservation [J].
Cooper, M ;
Haines, K .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1996, 101 (C1) :1059-1077
[8]  
Cummings J.A., 2013, Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, VII., P303, DOI [DOI 10.1007/978-3-642-35088-713, 10.1007/978-3-642-35088-7_13]
[9]   Operational multivariate ocean data assimilation [J].
Cummings, James A. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2005, 131 (613) :3583-3604
[10]   Ensemble estimation of background-error variances in a three-dimensional variational data assimilation system for the global ocean [J].
Daget, N. ;
Weaver, A. T. ;
Balmaseda, M. A. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2009, 135 (641) :1071-1094