Daugavet property in projective symmetric tensor products of Banach spaces

被引:11
作者
Martin, Miguel [1 ]
Rueda Zoca, Abraham [2 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Anal Matemat, Granada 18071, Spain
[2] Univ Murcia, Dept Matemat, Campus Espinardo, Murcia 30100, Spain
关键词
Daugavet property; Polynomial Daugavet property; Symmetric tensor product; Projective tensor product; L-1-preduals; INTERSECTION-PROPERTIES; SUBSPACES; EQUATION; POINTS; BALLS; DUALS; NORMS;
D O I
10.1007/s43037-022-00186-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that all the symmetric projective tensor products of a Banach space X have the Daugavet property provided X has the Daugavet property and either X is an L-1-predual (i.e., X* is isometric to an L-1-space) or X is a vector-valued L-1-space. In the process of proving it, we get a number of results of independent interest. For instance, we characterise "localised" versions of the Daugavet property [i.e., Daugavet points and Delta-points introduced in Abrahamsen et al. (Proc Edinb Math Soc 63:475-496 2020)] for L-1-preduals in terms of the extreme points of the topological dual, a result which allows to characterise a polyhedrality property of real L-1-preduals in terms of the absence of Delta-points and also to provide new examples of L-1-preduals having the convex diametral local diameter two property. These results are also applied to nicely embedded Banach spaces [in the sense of Werner (J Funct Anal 143:117-128, 1997)] so, in particular, to function algebras. Next, we show that the Daugavet property and the polynomial Daugavet property are equivalent for L-1-preduals and for spaces of Lipschitz functions. Finally, an improvement of recent results in Rueda Zoca (J Inst Math Jussieu 20(4):1409-1428, 2021) about the Daugavet property for projective tensor products is also obtained.
引用
收藏
页数:32
相关论文
共 45 条
[1]   Delta- and Daugavet points in Banach spaces [J].
Abrahamsen, T. A. ;
Haller, R. ;
Lima, V ;
Pirk, K. .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2020, 63 (02) :475-496
[2]  
[Anonymous], Dineen
[3]  
Becerra Guerrero J., 2006, METHODS BANACH SPACE, V337, P91
[4]   Representable spaces have the polynomial Daugavet property [J].
Botelho, Geraldo ;
Santos, Elisa R. .
ARCHIV DER MATHEMATIK, 2016, 107 (01) :37-42
[5]   On strongly norm attaining Lipschitz maps [J].
Cascales, Bernardo ;
Chiclana, Rafael ;
Garcia-Lirola, Luis C. ;
Martin, Miguel ;
Rueda Zoca, Abraham .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (06) :1677-1717
[6]   RETHINKING POLYHEDRALITY FOR LINDENSTRAUSS SPACES [J].
Casini, Emanuele ;
Miglierina, Enrico ;
Piasecki, Lukasz ;
Vesely, Libor .
ISRAEL JOURNAL OF MATHEMATICS, 2016, 216 (01) :355-369
[7]   The Daugavet equation for polynomials [J].
Choi, Yun Sung ;
Garcia, Domingo ;
Maestre, Manuel ;
Martin, Miguel .
STUDIA MATHEMATICA, 2007, 178 (01) :63-82
[8]   Some geometric properties of disk algebras [J].
Choi, Yun Sung ;
Garcia, Domingo ;
Kim, Sun Kwang ;
Maestre, Manuel .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (01) :147-157
[9]   POLYNOMIAL NUMERICAL INDEX FOR SOME COMPLEX VECTOR-VALUED FUNCTION SPACES [J].
Choi, Yun Sung ;
Garcia, Doming ;
Maestre, Manuel ;
Martin, Miguel .
QUARTERLY JOURNAL OF MATHEMATICS, 2008, 59 :455-474
[10]  
Daugavet I.K., 1963, Usp. Mat. Nauk, V18, P157