Reversibility Algorithm for 2D Cellular Automata with Reflective Condition

被引:1
|
作者
Redjepov, S. [1 ]
Acar, E. [2 ]
Uguz, S. [3 ]
机构
[1] Tashkent Univ Informat Technol, Fac Comp Engn, Tashkent 100202, Uzbekistan
[2] Harran Univ, Dept Math, TR-63120 Sanliurfa, Turkey
[3] SU Math & Sci Acad, TR-63100 S Urfa, Turkey
关键词
reversibility; 2D CA; rule matrix; reflective boundary; ternary field;
D O I
10.12693/APhysPolA.134.454
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the present paper, there are studied main theoretical views of two-dimensional (2D) linear uniform cellular automata with reflective boundary condition over the ternary field, i.e. three states spin case or Z(3). We set up a relation between reversibility of cellular automata and characterization of 2D uniform linear cellular automata with this special boundary conditions by using of the matrix theory. In near future, these cellular automata can be found in many different real life applications, e.g. computability theory, theoretical biology, image processing area, textile design, video processing, etc.
引用
收藏
页码:454 / 456
页数:3
相关论文
共 50 条
  • [21] Edge Detection Property of 2D Cellular Automata
    Jahan, Wani Shah
    EMERGING TRENDS IN EXPERT APPLICATIONS AND SECURITY, 2019, 841 : 81 - 87
  • [22] Evolving Cellular Automata for 2D Form Generation
    Chavoya, Arturo
    Duthen, Yves
    9TH INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS AND ARTIFICIAL INTELLIGENCE, 2006, : 129 - 137
  • [23] On the analysis of "simple" 2D stochastic cellular automata
    Regnault, Damien
    Schabanel, Nicolas
    Thierry, Eric
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2010, 12 (02): : 263 - 294
  • [24] Renormalisation of 2D Cellular Automata with an Absorbing State
    Weaver, Iain S.
    Prugel-Bennett, Adam
    JOURNAL OF STATISTICAL PHYSICS, 2015, 159 (02) : 211 - 220
  • [25] 2D Hexagonal Finite Fuzzy Cellular Automata
    Rajasekar, M.
    Jacob, Lekha Susan
    Anbu, R.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2022, 13 (01): : 171 - 181
  • [26] Classification of 2D Cellular Automata Nongroup Rules
    Alanazi, Norah H.
    Khan, Abdulraouf
    IEEE ACCESS, 2024, 12 : 84253 - 84260
  • [27] Discrete parabolas and circles on 2D cellular automata
    Delorme, M
    Mazoyer, J
    Tougne, L
    THEORETICAL COMPUTER SCIENCE, 1999, 218 (02) : 347 - 417
  • [28] On the Analysis of "Simple" 2D Stochastic Cellular Automata
    Regnault, Damien
    Schabanel, Nicolas
    Thierry, Eric
    LANGUAGE AND AUTOMATA THEORY AND APPLICATIONS, 2008, 5196 : 452 - 463
  • [29] Performance modeling of 2D cellular automata on FPGA
    Murtaza, S.
    Hoekstra, A. G.
    Sloot, P. M. A.
    2007 INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS, PROCEEDINGS, VOLS 1 AND 2, 2007, : 74 - 78
  • [30] THE SURJECTIVITY PROBLEM FOR 2D CELLULAR-AUTOMATA
    DURAND, B
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1994, 49 (03) : 718 - 725