A mathematical model for the dynamics and MCMC analysis of tomato bacterial wilt disease

被引:5
|
作者
Remo, Flavia [1 ]
Luboobi, Livingstone S. [2 ]
Mabalawata, Isambi Sailon [3 ]
Nannyonga, Betty K. [2 ]
机构
[1] Friedrich Schiller Univ Jena, Inst Math, Ernst Abbe Pl 2, D-07743 Jena, Germany
[2] Makerere Univ, Dept Math, POB 7062, Kampala, Uganda
[3] African Inst Math Sci AIMS Tanzania, POB 176, Bagamoyo, Coastal Region, Tanzania
关键词
TBWD; stability analysis; sensitivity analysis; MCMC; controls; METROPOLIS ALGORITHM; BAYESIAN-APPROACH; ADAPTIVE MCMC; HIV;
D O I
10.1142/S1793524518500018
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we formulate and analyze a mathematical model to investigate the transmission dynamics of tomato bacterial wilt disease (TBWD) in Mukono district, Uganda. We derive the basic reproduction number R-0 and prove the existence of a diseasefree equilibrium point which is globally stable if R-0 < 1 and an endemic equilibrium which exists if R-0 > 1. Model parameters are estimated using the Markov Chain Monte Carlo (MCMC) methods and robustness tested. The model parameters were observed to be identifiable. Numerical simulations show that soil solarization and sensitization of farmers can help to eliminate the disease in Uganda. A modified tomato bacterial wilt model with control terms is formulated.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] STABILITY ANALYSIS OF A NONLINEAR MATHEMATICAL MODEL FOR COVID-19 TRANSMISSION DYNAMICS
    Borah, Padma Bhushan
    Nath, Bhagya Jyoti
    Nath, Kumud Chandra
    Sarmah, Hemanta Kumar
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2023,
  • [32] Mathematical analysis of a model for the transmission dynamics of Trichomonas vaginalis (TV) and HIV coinfection
    Garba, Salisu M.
    Mumba, Chibale K.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (18) : 8741 - 8764
  • [33] In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae .2. Mathematical model
    Rizzi, M
    Baltes, M
    Theobald, U
    Reuss, M
    BIOTECHNOLOGY AND BIOENGINEERING, 1997, 55 (04) : 592 - 608
  • [34] Mathematical analysis of fractional Chlamydia pandemic model
    Alqahtani, Zuhur
    Almuneef, Areej
    Darassi, Mahmoud H.
    Abuhour, Yousef
    Al-arydah, Mo'tassem
    Safi, Mohammad A.
    Al-Hdaibat, Bashir
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [35] MATHEMATICAL MODELLING AND ANALYSIS OF CHOLERA DYNAMICS VIA VECTOR TRANSMISSION
    Anteneh, Leul Mekonnen
    Kakai, Romain Glele
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2024,
  • [36] Role of antibiotic therapy in bacterial disease: A mathematical study
    Roy, Priti Kumar
    Zhang, Yanhui
    Ghosh, Priyanka
    Pal, Joydeep
    Al Basir, Fahad
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2018, 11 (03)
  • [37] A mathematical model to study the population dynamics of hypertensive disorders during pregnancy
    Daud, Auni Aslah Mat
    Toh, Cher Qing
    Saidur, Salilah
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2019, 22 (04) : 433 - 450
  • [38] A mathematical model to the melanoma dynamics involving CAR T-cells
    Rodrigues, Guilherme
    Silva, Jairo G.
    Adimy, Mostafa
    Mancera, Paulo F. A.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (01)
  • [39] A mathematical model to the melanoma dynamics involving CAR T-cellsA mathematical model to the melanoma dynamics involving CAR T-cellsG. Rodrigues et al.
    Guilherme Rodrigues
    Jairo G. Silva
    Mostafa Adimy
    Paulo F. A. Mancera
    Computational and Applied Mathematics, 2025, 44 (3)
  • [40] Mathematical analysis of plankton population dynamics
    Yussof, Fatin Nadiah
    Maan, Normah
    Reba, Nadzri
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2020, 16 (01): : 109 - 114