Discrete and ultradiscrete Backlund transformation for KdV equation

被引:3
作者
Isojima, S. [1 ]
Kubo, S. [2 ]
Murata, M. [1 ]
Satsuma, J. [1 ]
机构
[1] Aoyama Gakuin Univ, Dept Math & Phys, Sagamihara, Kanagawa 2298558, Japan
[2] Cabinet Off Govt Japan, Publ Relat Off, Chiyoda Ku, Tokyo 1008914, Japan
关键词
D O I
10.1088/1751-8113/41/2/025205
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Backlund transformation for the discrete Korteweg-de Vries equation is introduced in the bilinear form. The superposition formula is also derived from the transformation. An ultradiscrete analogue of the transformation is presented by means of the ultradiscretization technique. This analogue gives the Backlund transformation for the box and ball system. The ultradiscrete soliton solutions for the system are also discussed with explicit examples.
引用
收藏
页数:8
相关论文
共 19 条
[1]   SOLITON-SOLUTIONS OF THE KORTEWEG-DEVRIES AND KADOMTSEV-PETVIASHVILI EQUATIONS - THE WRONSKIAN TECHNIQUE [J].
FREEMAN, NC ;
NIMMO, JJC .
PHYSICS LETTERS A, 1983, 95 (01) :1-3
[2]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&
[3]   DISCRETE ANALOG OF A GENERALIZED TODA EQUATION [J].
HIROTA, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1981, 50 (11) :3785-3791
[4]   NONLINEAR PARTIAL DIFFERENCE EQUATIONS .1. DIFFERENCE ANALOG OF KORTEWEG-DEVRIES EQUATION [J].
HIROTA, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1977, 43 (04) :1424-1433
[5]   NEW FORM OF BACKLUND TRANSFORMATIONS AND ITS RELATION TO INVERSE SCATTERING PROBLEM [J].
HIROTA, R .
PROGRESS OF THEORETICAL PHYSICS, 1974, 52 (05) :1498-1512
[6]  
Hirota R., 2004, DIRECT METHOD SOLITO, DOI [10.1017/CBO9780511543043, DOI 10.1017/CBO9780511543043]
[7]   Ultradiscrete Miura transformation [J].
Kubo, S. ;
Isojima, S. ;
Murata, M. ;
Satsuma, J. .
PHYSICS LETTERS A, 2007, 362 (5-6) :430-434
[9]   THE DISCRETE KORTEWEG-DE VRIES EQUATION [J].
NIJHOFF, F ;
CAPEL, H .
ACTA APPLICANDAE MATHEMATICAE, 1995, 39 (1-3) :133-158
[10]   CASORATI AND DISCRETE GRAM TYPE DETERMINANT REPRESENTATIONS OF SOLUTIONS TO THE DISCRETE KP HIERARCHY [J].
OHTA, Y ;
HIROTA, R ;
TSUJIMOTO, S ;
IMAI, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1993, 62 (06) :1872-1886