Concentration phenomenon of solutions for a class of Kirchhoff-type equations with critical growth

被引:8
作者
Li, Quanqing [1 ]
Teng, Kaimin [2 ]
Wang, Wenbo [3 ]
Zhang, Jian [4 ,5 ,6 ]
机构
[1] Honghe Univ, Dept Math, Mengzi 661100, Yunnan, Peoples R China
[2] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Shanxi, Peoples R China
[3] Yunnan Univ, Dept Math & Stat, Kunming 650091, Yunnan, Peoples R China
[4] Hunan Univ Technol & Business, Sch Math & Stat, Changsha 410205, Hunan, Peoples R China
[5] Hunan Univ Technol & Business, Key Lab Hunan Prov Stat Learning & Intelligent Co, Changsha 410205, Hunan, Peoples R China
[6] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Kirchhoff-type equations; Critical growths; Semiclassical solutions; SIGN-CHANGING SOLUTIONS; GROUND-STATE SOLUTIONS; HIGH-ENERGY SOLUTIONS; POSITIVE SOLUTIONS; SCHRODINGER-EQUATIONS; EXISTENCE; MULTIPLICITY; BEHAVIOR;
D O I
10.1016/j.jmaa.2020.124355
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following Kirchhoff-type equations with critical growth -(epsilon(2) a + epsilon b integral(R3) vertical bar del u vertical bar(2) dx) Delta u + V(x)u = P(x)f(u) + Q(x)vertical bar u vertical bar(4)u, x is an element of R-3, where epsilon > 0, a > 0, b > 0 and f is a continuous superlinear but subcritical nonlinearity. Under suitable assumptions on the potentials V(x), P(x) and Q(x), we obtain the existence and concentration of positive solutions and prove that the semiclassical solutions omega(epsilon) with maximum points x(epsilon) concentrating at a special set S-p characterized by V(x), P(x) and Q(x). Furthermore, for any sequence x(epsilon) -> x(0) is an element of S-p, v(epsilon) (x) := omega(epsilon) (epsilon x + x(epsilon)) converges in H-1 (R-3) to a ground state solution v of -(a + b integral(R3) vertical bar del v vertical bar(2)dx) Delta v + V(x(0))v = P(x(0)) f (v) + Q(x(0))vertical bar v vertical bar(4)v, x is an element of R-3. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:23
相关论文
共 49 条
[1]  
[Anonymous], 2015, COMMUN CONTEMP MATH, DOI DOI 10.1142/S0219199714500011
[2]   On the well-posedness of the Kirchhoff string [J].
Arosio, A ;
Panizzi, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :305-330
[3]   Kirchhoff-type problems on a geodesic ball of the hyperbolic space [J].
Bisci, Giovanni Molica .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 186 :55-73
[4]   An Existence Result for Fractional Kirchhoff-Type Equations [J].
Bisci, Giovanni Molica ;
Tulone, Francesco .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2016, 35 (02) :181-197
[5]   The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions [J].
Chen, Ching-yu ;
Kuo, Yueh-cheng ;
Wu, Tsung-fang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (04) :1876-1908
[6]   Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity [J].
Chen, Sitong ;
Zhang, Binlin ;
Tang, Xianhua .
ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) :148-167
[7]   Infinitely many solutions for super-quadratic Kirchhoff-type equations with sign-changing potential [J].
Chen, Sitong ;
Tang, Xianhua .
APPLIED MATHEMATICS LETTERS, 2017, 67 :40-45
[8]   Sign-changing multi-bump solutions for the Chern-Simons-Schrodinger equations in R2 [J].
Chen, Zhi ;
Tang, Xianhua ;
Zhang, Jian .
ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) :1066-1091
[9]   Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in R3 [J].
Deng, Yinbin ;
Peng, Shuangjie ;
Shuai, Wei .
JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (11) :3500-3527
[10]   Multiscale Weak Compactness in Metric Spaces [J].
Devillanova G. .
Journal of Elliptic and Parabolic Equations, 2016, 2 (1-2) :131-144