Chaos in Symmetric Phase Oscillator Networks

被引:52
作者
Bick, Christian [1 ,2 ]
Timme, Marc [1 ,3 ]
Paulikat, Danilo [3 ]
Rathlev, Dirk [3 ]
Ashwin, Peter [4 ]
机构
[1] MPIDS, Network Dynam Grp, D-37073 Gottingen, Germany
[2] Univ Gottingen, Inst Math, D-37073 Gottingen, Germany
[3] Univ Gottingen, Fac Phys, D-37077 Gottingen, Germany
[4] Univ Exeter, Math Res Inst, Exeter EX4 4QF, Devon, England
关键词
COUPLED OSCILLATORS; DYNAMICS; SYNCHRONIZATION; KURAMOTO;
D O I
10.1103/PhysRevLett.107.244101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Phase-coupled oscillators serve as paradigmatic models of networks of weakly interacting oscillatory units in physics and biology. The order parameter which quantifies synchronization so far has been found to be chaotic only in systems with inhomogeneities. Here we show that even symmetric systems of identical oscillators may not only exhibit chaotic dynamics, but also chaotically fluctuating order parameters. Our findings imply that neither inhomogeneities nor amplitude variations are necessary to obtain chaos; i e., nonlinear interactions of phases give rise to the necessary instabilities.
引用
收藏
页数:4
相关论文
共 20 条
[1]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[2]   THE DYNAMICS OF N-WEAKLY COUPLED IDENTICAL OSCILLATORS [J].
ASHWIN, P ;
SWIFT, JW .
JOURNAL OF NONLINEAR SCIENCE, 1992, 2 (01) :69-108
[3]  
ASHWIN P, 2010, HETEROCLINIC SWITCHI, P31
[4]   Dynamics on networks of cluster states for globally coupled phase oscillators [J].
Ashwin, Peter ;
Orosz, Gabor ;
Wordsworth, John ;
Townley, Stuart .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2007, 6 (04) :728-758
[5]  
DOEDEL EJ, NUMERICAL CONTINUATI
[6]  
GOLUBITSKY M., 2002, The Symmetry Perspective, V200
[7]   DYNAMICS OF THE GLOBALLY COUPLED COMPLEX GINZBURG-LANDAU EQUATION [J].
HAKIM, V ;
RAPPEL, WJ .
PHYSICAL REVIEW A, 1992, 46 (12) :R7347-R7350
[8]   Resonant homoclinic flip bifurcations [J].
Homburg A.J. ;
Krauskopf B. .
Journal of Dynamics and Differential Equations, 2000, 12 (4) :807-850
[9]   Synchronization engineering: Theoretical framework and application to dynamical clustering [J].
Kori, Hiroshi ;
Rusin, Craig G. ;
Kiss, Istvan Z. ;
Hudson, John L. .
CHAOS, 2008, 18 (02)
[10]  
Kuramoto Y., 1984, Springer Series in Synergeticsg, P111, DOI [10.1007/978-3-642-69689-37, 10.1007/978-3-642-12601-7]