Optimal bandwidth selection for multivariate kernel deconvolution density estimation

被引:8
作者
Youndje, Elie [1 ]
Wells, Martin T. [2 ]
机构
[1] Univ Rouen, UMR CNRS 6085, Lab Math Raphael Salem, FR-76801 St Etienne, France
[2] Cornell Univ, Dept Sociol Stat, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
density estimation; deconvolution; cross-validation; asymptotic optimality;
D O I
10.1007/s11749-006-0027-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Assume we have i.i.d. replications from the mismeasured random vector Y=X+epsilon, where X and epsilon are mutually independent. We consider a data-driven bandwidth, based on a cross-validation ideas, for multivariate kernel deconvolution estimator of the density of X. The proposed data-driven bandwidth selection method is shown to be asymptotically optimal. As a by-product of the proof of this result, we show that the average squared error, the integrated squared error, and the mean integrated squared error are asymptotically equivalent error measures.
引用
收藏
页码:138 / 162
页数:25
相关论文
共 23 条
[1]  
BARRY J, 1995, J NONPARAMETR STAT, V4, P223
[2]  
BOWMAN AW, 1984, BIOMETRIKA, V71, P353
[3]   OPTIMAL RATES OF CONVERGENCE FOR DECONVOLVING A DENSITY [J].
CARROLL, RJ ;
HALL, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (404) :1184-1186
[4]   Bootstrap bandwidth selection in kernel density estimation from a contaminated sample [J].
Delaigle, A ;
Gijbels, I .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2004, 56 (01) :19-47
[5]   Practical bandwidth selection in deconvolution kernel density estimation [J].
Delaigle, A ;
Gijbels, I .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2004, 45 (02) :249-267
[6]  
DIGGLE PJ, 1993, J ROY STAT SOC B MET, V55, P523
[7]  
FAN JQ, 1991, SANKHYA SER A, V53, P97
[8]   ON THE OPTIMAL RATES OF CONVERGENCE FOR NONPARAMETRIC DECONVOLUTION PROBLEMS [J].
FAN, JQ .
ANNALS OF STATISTICS, 1991, 19 (03) :1257-1272
[10]  
Hall P., 1982, STOCHASTIC PROCESS A, V13, P11, DOI [DOI 10.1016/0304-4149(82)90003-5, 10.1016/0304-4149(82)90003-5]