Multiple Attention Mechanism Graph Convolution HAR Model Based on Coordination Theory

被引:9
作者
Hu, Kai [1 ,2 ]
Ding, Yiwu [1 ]
Jin, Junlan [1 ]
Xia, Min [1 ,2 ]
Huang, Huaming [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Automat, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Nanjing 210044, Peoples R China
关键词
human action recognition; graph neural network; attention module;
D O I
10.3390/s22145259
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Human action recognition (HAR) is the foundation of human behavior comprehension. It is of great significance and can be used in many real-world applications. From the point of view of human kinematics, the coordination of limbs is an important intrinsic factor of motion and contains a great deal of information. In addition, for different movements, the HAR algorithm provides important, multifaceted attention to each joint. Based on the above analysis, this paper proposes a HAR algorithm, which adopts two attention modules that work together to extract the coordination characteristics in the process of motion, and strengthens the attention of the model to the more important joints in the process of moving. Experimental data shows these two modules can improve the recognition accuracy of the model on the public HAR dataset (NTU-RGB + D, Kinetics-Skeleton).
引用
收藏
页数:18
相关论文
共 47 条
[1]  
Bruna J., 2013, ARXIV
[2]   MANet: a multi-level aggregation network for semantic segmentation of high-resolution remote sensing images [J].
Chen, Bingyu ;
Xia, Min ;
Qian, Ming ;
Huang, Junqing .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (15-16) :5874-5894
[3]   Unsupervised learning of depth estimation based on attention model and global pose optimization [J].
Dai, Renyue ;
Gao, Yongbin ;
Fang, Zhijun ;
Jiang, Xiaoyan ;
Wang, Anjie ;
Zhang, Juan ;
Zhong, Cengsi .
SIGNAL PROCESSING-IMAGE COMMUNICATION, 2019, 78 (284-292) :284-292
[4]  
Donahue J, 2015, PROC CVPR IEEE, P2625, DOI 10.1109/CVPR.2015.7298878
[5]   Learning Spatiotemporal Features with 3D Convolutional Networks [J].
Du Tran ;
Bourdev, Lubomir ;
Fergus, Rob ;
Torresani, Lorenzo ;
Paluri, Manohar .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :4489-4497
[6]  
Du Y, 2015, PROCEEDINGS 3RD IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION ACPR 2015, P579, DOI 10.1109/ACPR.2015.7486569
[7]   Convolutional Two-Stream Network Fusion for Video Action Recognition [J].
Feichtenhofer, Christoph ;
Pinz, Axel ;
Zisserman, Andrew .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1933-1941
[8]   Dual Attention Network for Scene Segmentation [J].
Fu, Jun ;
Liu, Jing ;
Tian, Haijie ;
Li, Yong ;
Bao, Yongjun ;
Fang, Zhiwei ;
Lu, Hanqing .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3141-3149
[9]   Two Stream LSTM : A Deep Fusion Framework for Human Action Recognition [J].
Gammulle, Harshala ;
Denman, Simon ;
Sridharan, Sridha ;
Fookes, Clinton .
2017 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2017), 2017, :177-186
[10]   MLNet: multichannel feature fusion lozenge network for land segmentation [J].
Gao, Jiahong ;
Weng, Liguo ;
Xia, Min ;
Lin, Haifeng .
JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (01)