A review: carbon nanotubes composite to enhance thermal & electrical properties for the space applications

被引:3
作者
Vartak, Dhaval A. [1 ]
Ghotekar, Yogesh [1 ]
Bhatt, Pina M. [2 ]
Makwana, Bharat [3 ]
Shah, H. N. [4 ]
Vadher, J. A. [5 ]
机构
[1] Space Applicat Ctr ISRO, QAMD, Ahmadabad, Gujarat, India
[2] Silver Oak Coll Engn & Technol, Mech Dept, Ahmadabad, Gujarat, India
[3] Kadi Sarva Vishwavidyalaya, Dept Chem, Gandhinagar, India
[4] Gandhinagar Inst Technol, Mech Dept, Gandinagar, India
[5] Govt Engn Coll, Mech Dept, Palanpur, India
关键词
Carbon nanotubes (CNTs); CNT composite; dispersion; thermal properties; electrical properties; space applications; CONDUCTIVITY; FIBER;
D O I
10.1080/14484846.2022.2122192
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The high specific stiffness materials are used to design the space payload components. These components should sustain the extreme environmental condition throughout their life cycle without failure. The prerequisites of future space missions need lightweight materials which must be mechanically strong and high thermal and electrically conductive. The Carbon Nanotubes (CNTs) are efficient filler material in composite or metal matrix to enhance greater electrical and thermal conductivity. The quality of the CNT nano composite relies upon several parameters like the types of CNTs, its purity, aspect ratio, amount of loading, alignment, and interfacial adhesion between the nanotube and polymer. The performance of the CNT-CFRP composite depends on the successful execution of the processing technique. This review paper intends to highlight the enhancement of the mechanical, thermal, electrical properties of the composite, and the challenges to achieving it. This review paper helps to optimise the process parameters to fabricate Space Payload Components, required to replace existing high-density Space Qualified Materials. This review paper should help optimize the process parameters to fabricate Space Payload Components, which can be excellent alternatives to the existing high-density Space Qualified Materials without making any compromise on the performance index.
引用
收藏
页码:566 / 574
页数:9
相关论文
共 34 条
[1]  
Akcin Y, 2016, Materials Sciences and Applications, V07, P465, DOI [10.4236/msa.2016.79041, DOI 10.4236/MSA.2016.79041]
[2]  
[Anonymous], INDIAN REMOTE SENSIN
[3]   Carbon nanotube reinforced polymer composites - A state of the art [J].
Bal, S. ;
Samal, S. S. .
BULLETIN OF MATERIALS SCIENCE, 2007, 30 (04) :379-386
[4]  
Ciecierska Ewelina., 2014, ECCM16 16 EUROPEAN C, DOI [10.1002/pat.3586, DOI 10.1002/PAT.3586]
[5]  
Davis J.R., 2000, ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys
[6]   An infiltration method for preparing single-wall nanotube/epoxy composites with improved thermal conductivity [J].
Du, FM ;
Guthy, C ;
Kashiwagi, T ;
Fischer, JE ;
Winey, KI .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2006, 44 (10) :1513-1519
[7]   Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences [J].
Gohardani, Omid ;
Artegui Elola, Maialen Chap ;
Elizetxea, Cristina .
PROGRESS IN AEROSPACE SCIENCES, 2014, 70 :42-68
[8]   Advances in Polyimide-Based Materials for Space Applications [J].
Gouzman, Irina ;
Grossman, Eitan ;
Verker, Ronen ;
Atar, Nurit ;
Bolker, Asaf ;
Eliaz, Noam .
ADVANCED MATERIALS, 2019, 31 (18)
[9]   Carbon Nanotube Layer for Reduction of Fiber Print-Through in Carbon Fiber Composites [J].
Guedes, Joana F. ;
Martins, Marta S. S. ;
Martins, Ramiro ;
Rocha, Nuno .
ADVANCES IN POLYMER TECHNOLOGY, 2019, 2019
[10]   Variation in Carbon Nanotube Polymer Composite Conductivity from the Effects of Processing, Dispersion, Aging and Sample Size [J].
Huang, Yan Y. ;
Marshall, Jean E. ;
Gonzalez-Lopez, Carlos ;
Terentjev, Eugene M. .
MATERIALS EXPRESS, 2011, 1 (04) :315-328