Nanoparticles disguised as red blood cells to evade the immune system
被引:135
|
作者:
Fang, Ronnie Hongbo
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA
Fang, Ronnie Hongbo
Hu, Che-Ming Jack
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA
Hu, Che-Ming Jack
Zhang, Liangfang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA
Univ Calif San Diego, Moores Canc Ctr, La Jolla, CA 92093 USAUniv Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA
Zhang, Liangfang
[1
,2
]
机构:
[1] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Moores Canc Ctr, La Jolla, CA 92093 USA
biomimetic nanoparticle;
drug delivery;
long circulation;
red blood cell membrane;
DRUG-DELIVERY;
PEGYLATION;
PROTEIN;
D O I:
10.1517/14712598.2012.661710
中图分类号:
Q81 [生物工程学(生物技术)];
Q93 [微生物学];
学科分类号:
071005 ;
0836 ;
090102 ;
100705 ;
摘要:
The development of nanoparticle platforms with long in vivo circulation half-life has long been one of the major goals in the field of cancer drug delivery. Long-circulating nanoparticles can more effectively localize to the tumor site through either passive or active targeting mechanisms. The current gold standard for bestowing long-circulating attributes involves the use of PEG, which surrounds the particles with a hydration layer and thereby prevents recognition by the mononuclear phagocyte system. Recently, a new strategy for synthesizing biomimetic nanoparticles has been inspired by the body's own long-circulating entities, red blood cells (RBCs). Such a system disguises drug nanocarriers as 'self' using membrane materials directly derived from RBCs. This method has been demonstrated to prolong particle systemic circulation half-life beyond that of the corresponding PEGylated systems. The RBC membrane-coated nanoparticles present a major breakthrough in drug delivery technology and show great promise for clinical applications. Herein we highlight the significance and the unique features of this nature-inspired nanoparticle platform and offer opinions on its future prospects.
机构:
Univ Med & Dent New Jersey, New Jersey Med Sch, Newark, NJ 07103 USA
Univ Med & Dent New Jersey, Grad Sch Biomed Sci, Newark, NJ 07103 USAUMDNJ Sch Osteopath Med, Camden, NJ USA
Patel, Shyam A.
Bliss, Sarah A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Med & Dent New Jersey, Grad Sch Biomed Sci, Newark, NJ 07103 USAUMDNJ Sch Osteopath Med, Camden, NJ USA
Bliss, Sarah A.
Rameshwar, Pranela
论文数: 0引用数: 0
h-index: 0
机构:
Univ Med & Dent New Jersey, New Jersey Med Sch, Newark, NJ 07103 USAUMDNJ Sch Osteopath Med, Camden, NJ USA