Structured Perovskite Light Absorbers for Efficient and Stable Photovoltaics

被引:101
作者
He, Tingwei [1 ]
Jiang, Yuanzhi [1 ]
Xing, Xiangyu [1 ]
Yuan, Mingjian [1 ]
机构
[1] Nankai Univ, Coll Chem, Renewable Energy Convers & Storage Ctr Recast, Key Lab Adv Energy Mat Chem,Minist Educ, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
2D; 3D hybrid perovskites; carrier transport; metal-halide perovskites; perovskite photovoltaics; reduced-dimensional perovskites; ORGANIC-INORGANIC PEROVSKITES; LEAD IODIDE PEROVSKITE; SOLAR-CELLS; HALIDE PEROVSKITES; HIGHLY EFFICIENT; DIELECTRIC CONFINEMENT; HYBRID PEROVSKITES; TUNABLE PEROVSKITE; CATION; FORMAMIDINIUM;
D O I
10.1002/adma.201903937
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Organic-inorganic hybrid lead-halide perovskite materials (ABX(3)) have attracted widespread attention in the field of photovoltaics owing to their impressive optical and electrical properties. However, obstacles still exist in the commercialization of perovskite photovoltaics, such as poor stability, hysteresis, and human toxicity. A-site cation engineering is considered to be a powerful tool to tune perovskite structures and the resulting optoelectronic properties. Based on the selection and combination of A-site cations, three types of perovskite structures, i.e., 3D perovskite, reduced-dimensional (2D/quasi-2D) perovskite, and 2D/3D hybrid perovskite can be formed. Herein, the remarkable breakthroughs resulting from these three perovskite structures are summarized, and their corresponding properties and characteristics, as well as their intrinsic disadvantages, are highlighted. By summarizing recent research progress, a new viewpoint for improving the performance and stability of perovskite photovoltaics is provided.
引用
收藏
页数:17
相关论文
共 155 条
[1]   Two Dimensional Organometal Halide Perovskite Nanorods with Tunable Optical Properties [J].
Aharon, Sigalit ;
Etgar, Lioz .
NANO LETTERS, 2016, 16 (05) :3230-3235
[2]  
Ahmad S, 2019, JOULE, V3, P794, DOI 10.1016/j.joule.2018.11.026
[3]   Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide [J].
Ahn, Namyoung ;
Son, Dae-Yong ;
Jang, In-Hyuk ;
Kang, Seong Min ;
Choi, Mansoo ;
Park, Nam-Gyu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (27) :8696-8699
[4]   Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin-Orbit Coupling and Octahedra Tilting [J].
Amat, Anna ;
Mosconi, Edoardo ;
Ronca, Enrico ;
Quarti, Claudio ;
Umari, Paolo ;
Nazeeruddin, Md. K. ;
Graetzel, Michael ;
De Angelis, Filippo .
NANO LETTERS, 2014, 14 (06) :3608-3616
[5]  
[Anonymous], 2014, BEST RES CELL EFF
[6]   Dimensional Engineering of a Graded 3D-2D Halide Perovskite Interface Enables Ultrahigh Voc Enhanced Stability in the p-i-n Photovoltaics [J].
Bai, Yang ;
Xiao, Shuang ;
Hu, Chen ;
Zhang, Teng ;
Meng, Xiangyue ;
Lin, He ;
Yang, Yinglong ;
Yang, Shihe .
ADVANCED ENERGY MATERIALS, 2017, 7 (20)
[7]   Crystal and magnetic structures of Ca4Mn3O10, an n=3 Ruddlesden-Popper compound [J].
Battle, PD ;
Green, MA ;
Lago, J ;
Millburn, JE ;
Rosseinsky, MJ ;
Vente, JF .
CHEMISTRY OF MATERIALS, 1998, 10 (02) :658-664
[8]   Hybrid Organic-Inorganic Perovskites (HOIPs): Opportunities and Challenges [J].
Berry, Joseph ;
Buonassisi, Tonio ;
Egger, David A. ;
Hodes, Gary ;
Kronik, Leeor ;
Loo, Yueh-Lin ;
Lubomirsky, Igor ;
Marder, Seth R. ;
Mastai, Yitzhak ;
Miller, Joel S. ;
Mitzi, David B. ;
Paz, Yaron ;
Rappe, Andrew M. ;
Riess, Ilan ;
Rybtchinski, Boris ;
Stafsudd, Oscar ;
Stevanovic, Vladan ;
Toney, Michael F. ;
Zitoun, David ;
Kahn, Antoine ;
Ginley, David ;
Cahen, David .
ADVANCED MATERIALS, 2015, 27 (35) :5102-5112
[9]  
Bi DQ, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.142, 10.1038/NENERGY.2016.142]
[10]   High-Performance Perovskite Solar Cells with Enhanced Environmental Stability Based on Amphiphile-Modified CH3NH3PbI3 [J].
Bi, Dongqin ;
Gao, Peng ;
Scopelliti, Rosario ;
Oveisi, Emad ;
Luo, Jingshan ;
Graetzel, Michael ;
Hagfeldt, Anders ;
Nazeeruddin, Mohammad Khaja .
ADVANCED MATERIALS, 2016, 28 (15) :2910-2915