Identification of Non-linear Chemical Systems with Neural Networks

被引:0
作者
Oramas Rodriguez, Reynold Alejandro [1 ]
Gonzalez Santos, Ana Isabel [1 ]
Garcia Gonzalez, Laura [1 ]
机构
[1] Technol Univ Havana, 114 11901 Ciclovia & Rotonda, Havana 19390, Cuba
来源
PROGRESS IN ARTIFICIAL INTELLIGENCE AND PATTERN RECOGNITION | 2021年 / 13055卷
关键词
Tennesse Eastman; Neural networks; NARX; Systems identification; Non-linear systems;
D O I
10.1007/978-3-030-89691-1_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study proposes the use of neural networks, specifically NARX networks, in the modeling of non-linear chemical systems with the use of the control field systems identification methodology. The chemical reactor of the Tennessee Eastman, responsible for the greater non-linearities of the plant, is studied. First, a simple decentralized control scheme is proposed for the stabilization of the plant, an identification experiment is designed, and two sub-models are trained for the level and pressure of the reactor, obtaining satisfactory results.
引用
收藏
页码:91 / 102
页数:12
相关论文
共 17 条
[1]   Evolving neural networks using bird swarm algorithm for data classification and regression applications [J].
Aljarah, Ibrahim ;
Faris, Hossam ;
Mirjalili, Seyedali ;
Al-Madi, Nailah ;
Sheta, Alaa ;
Mafarja, Majdi .
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (04) :1317-1345
[2]  
Bathelt A., 2014, 5 INT S ADV CONTR IN
[3]  
Brunton S., 2019, DATA DRIVEN SCI ENGI
[4]  
Contreras W., 2019, INGENIUS, V19, P9
[5]  
Hieu DX, 2017, INT CONF SYST SCI EN, P113, DOI 10.1109/ICSSE.2017.8030848
[6]   A PLANT-WIDE INDUSTRIAL-PROCESS CONTROL PROBLEM [J].
DOWNS, JJ ;
VOGEL, EF .
COMPUTERS & CHEMICAL ENGINEERING, 1993, 17 (03) :245-255
[7]  
Faris H., 2013, INT J OFADVANCED SCI, V50, P121
[8]  
García-González Laura, 2020, EAC, V41, P18
[9]  
Hagan M.T., 1996, Neural Network Design
[10]   Data-driven digital twin technology for optimized control in process systems [J].
He, Rui ;
Chen, Guoming ;
Dong, Che ;
Sun, Shufeng ;
Shen, Xiaoyu .
ISA TRANSACTIONS, 2019, 95 :221-234