An Inexact Semismooth Newton Method on Riemannian Manifolds with Application to Duality-Based Total Variation Denoising

被引:3
|
作者
Diepeveen, Willem [1 ]
Lellmann, Jan [2 ]
机构
[1] Univ Cambridge, Fac Math, DAMTP, Cambridge CB2 1TS, England
[2] Univ Lubeck, Inst Math & Image Comp, D-23562 Lubeck, Germany
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2021年 / 14卷 / 04期
关键词
higher-order optimization; nonsmooth optimization; Riemannian optimization; Fenchel duality theory; semismooth Newton method; total variation; LOCALLY LIPSCHITZ FUNCTIONS; TOTAL VARIATION REGULARIZATION; AUGMENTED LAGRANGIAN METHOD; TOTAL GENERALIZED VARIATION; NONSMOOTH OPTIMIZATION; 2ND-ORDER DIFFERENCES; CONVEX-OPTIMIZATION; BOUNDED VARIATION; VALUED IMAGES; POINT METHOD;
D O I
10.1137/21M1398513
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a higher-order method for solving nonsmooth optimization problems on manifolds. To obtain superlinear convergence, we apply a Riemannian semismooth Newton method to a nonsmooth nonlinear primal-dual optimality system based on a recent extension of Fenchel duality theory to Riemannian manifolds. We also propose an inexact version of the Riemannian semismooth Newton method and prove conditions for local linear and superlinear convergence that hold independent of the sign of the curvature. Numerical experiments on l(2)-TV-like problems with dual regularization confirm superlinear convergence on manifolds with positive and negative curvature.
引用
收藏
页码:1565 / 1600
页数:36
相关论文
共 28 条