Self-supervised Domain Adaptation for Diabetic Retinopathy Grading Using Vessel Image Reconstruction

被引:4
作者
Nguyen, Duy M. H. [1 ]
Mai, Truong T. N. [2 ]
Than, Ngoc T. T. [3 ]
Prange, Alexander [1 ,2 ]
Sonntag, Daniel [1 ,2 ,4 ]
机构
[1] German Res Ctr Artificial Intelligence DFKI, Saarland Informat Campus Saarbruken, Saarbrucken, Germany
[2] Dongguk Univ, Dept Multimedia Engn, Seoul, South Korea
[3] Stanford Univ, Byers Eye Inst, Stanford, CA USA
[4] Carl von Ossietzky Univ Oldenburg, Oldenburg, Germany
来源
ADVANCES IN ARTIFICIAL INTELLIGENCE, KI 2021 | 2021年 / 12873卷
关键词
Domain adaption; Diabetic retinopathy; Self-supervised learning; Deep learning; Interactive machine learning;
D O I
10.1007/978-3-030-87626-5_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates the problem of domain adaptation for diabetic retinopathy (DR) grading. We learn invariant target-domain features by defining a novel self-supervised task based on retinal vessel image reconstructions, inspired by medical domain knowledge. Then, a benchmark of current state-of-the-art unsupervised domain adaptation methods on the DR problem is provided. It can be shown that our approach outperforms existing domain adaption strategies. Furthermore, when utilizing entire training data in the target domain, we are able to compete with several state-of-the-art approaches in final classification accuracy just by applying standard network architectures and using image-level labels.
引用
收藏
页码:349 / 361
页数:13
相关论文
共 42 条
[1]  
[Anonymous], 2017, TRAINING
[2]   Self-supervised learning for medical image analysis using image context restoration [J].
Chen, Liang ;
Bentley, Paul ;
Mori, Kensaku ;
Misawa, Kazunari ;
Fujiwara, Michitaka ;
Rueckert, Daniel .
MEDICAL IMAGE ANALYSIS, 2019, 58
[3]   Unsupervised Visual Representation Learning by Context Prediction [J].
Doersch, Carl ;
Gupta, Abhinav ;
Efros, Alexei A. .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1422-1430
[4]   A Visually Explainable Learning System for Skin Lesion Detection Using Multiscale Input with Attention U-Net [J].
Duy Minh Ho Nguyen ;
Ezema, Abraham ;
Nunnari, Fabrizio ;
Sonntag, Daniel .
KI 2020: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 12325 :313-319
[5]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
[6]  
Graham B., 2015, Tech. Rep.
[7]  
Gretton A, 2012, J MACH LEARN RES, V13, P723
[8]   Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs [J].
Gulshan, Varun ;
Peng, Lily ;
Coram, Marc ;
Stumpe, Martin C. ;
Wu, Derek ;
Narayanaswamy, Arunachalam ;
Venugopalan, Subhashini ;
Widner, Kasumi ;
Madams, Tom ;
Cuadros, Jorge ;
Kim, Ramasamy ;
Raman, Rajiv ;
Nelson, Philip C. ;
Mega, Jessica L. ;
Webster, R. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22) :2402-2410
[9]  
Haneda Shion, 2010, Nihon Rinsho, V68 Suppl 9, P228
[10]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778