Inverse design of digital nanophotonic devices using the adjoint method

被引:122
作者
Wang, Kaiyuan [1 ]
Ren, Xinshu [1 ]
Chang, Weijie [1 ]
Lu, Longhui [1 ]
Liu, Deming [1 ]
Zhang, Minming [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
[2] Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
COMPACT; MODE;
D O I
10.1364/PRJ.383887
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A high-efficiency inverse design of "digital" subwavelength nanophotonic devices using the adjoint method is proposed. We design a single-mode 3 dB power divider and a dual-mode demultiplexer to demonstrate the efficiency of the proposed inverse design approach, called the digitized adjoint method, for single- and dual-object optimization, respectively. The optimization comprises three stages: 1) continuous variation for an "analog" pattern; 2) forced permittivity biasing for a "quasi-digital" pattern; and 3) a multilevel digital pattern. Compared with the conventional brute-force method, the proposed method can improve design efficiency by about five times, and the performance optimization can reach approximately the same level. The method takes advantages of adjoint sensitivity analysis and digital subwavelength structure and creates a new way for the efficient and high-performance design of compact digital subwavelength nanophotonic devices, which could overcome the efficiency bottleneck of the brute-force method, which is restricted by the number of pixels of a digital pattern, and improve the device performance by extending a conventional binary pattern to a multilevel one. (C) 2020 Chinese Laser Press
引用
收藏
页码:528 / 533
页数:6
相关论文
共 22 条
[1]   Ultra-compact mode (de) multiplexer based on subwavelength asymmetric Y-junction [J].
Chang, Weijie ;
Lu, Luluzi ;
Ren, Xinshu ;
Li, Dongyu ;
Pan, Zepeng ;
Cheng, Mengfan ;
Liu, Deming ;
Zhang, Minming .
OPTICS EXPRESS, 2018, 26 (07) :8162-8170
[2]   A non-linear material interpolation for design of metallic nano-particles using topology optimization [J].
Christiansen, Rasmus E. ;
Vester-Petersen, Joakim ;
Madsen, Soren Peder ;
Sigmund, Ole .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 343 :23-39
[3]   Machine Learning Regression Approach to the Nanophotonic Waveguide Analyses [J].
Chugh, Sunny ;
Ghosh, Souvik ;
Gulistan, Aamir ;
Rahman, B. M. A. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (24) :6080-6089
[4]   Topology optimization for three-dimensional electromagnetic waves using an edge element-based finite-element method [J].
Deng, Yongbo ;
Korvink, Jan G. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2189)
[5]   Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides [J].
Frellsen, Louise F. ;
Ding, Yunhong ;
Sigmund, Ole ;
Frandsen, Lars H. .
OPTICS EXPRESS, 2016, 24 (15) :16866-16873
[6]   Designing integrated photonic devices using artificial neural networks [J].
Hammond, Alec M. ;
Camacho, Ryan M. .
OPTICS EXPRESS, 2019, 27 (21) :29620-29638
[7]   Topology optimization for nano-photonics [J].
Jensen, Jakob S. ;
Sigmund, Ole .
LASER & PHOTONICS REVIEWS, 2011, 5 (02) :308-321
[8]   Inverse-Design and Demonstration of Ultracompact Silicon Meta-Structure Mode Exchange Device [J].
Jia, Hao ;
Zhou, Ting ;
Fu, Xin ;
Ding, Jianfeng ;
Yang, Lin .
ACS PHOTONICS, 2018, 5 (05) :1833-1838
[9]   Deep Learning Reveals Underlying Physics of Light-Matter Interactions in Nanophotonic Devices [J].
Kiarashinejad, Yashar ;
Abdollahramezani, Sajjad ;
Zandehshahvar, Mohammadreza ;
Hemmatyar, Omid ;
Adibi, Ali .
ADVANCED THEORY AND SIMULATIONS, 2019, 2 (09)
[10]   Adjoint shape optimization applied to electromagnetic design [J].
Lalau-Keraly, Christopher M. ;
Bhargava, Samarth ;
Miller, Owen D. ;
Yablonovitch, Eli .
OPTICS EXPRESS, 2013, 21 (18) :21693-21701