Discretizations in isogeometric analysis of Navier-Stokes flow

被引:41
作者
Nielsen, Peter Nortoft [1 ,2 ]
Gersborg, Allan Roulund [2 ]
Gravesen, Jens [1 ]
Pedersen, Niels Leergaard [2 ]
机构
[1] Tech Univ Denmark, DTU Math, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark, DTU Mech Engn, DK-2800 Lyngby, Denmark
关键词
Isogeometric analysis; Fluid mechanics; Navier-Stokes flow; Inf-sup stability; Lid-driven square cavity; DIRICHLET BOUNDARY-CONDITIONS; EQUATIONS; ELEMENTS; NURBS;
D O I
10.1016/j.cma.2011.06.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper deals with isogeometric analysis of 2-dimensional, steady state, incompressible Navier-Stokes flow subjected to Dirichlet boundary conditions. We present a detailed description of the numerical method used to solve the boundary value problem. Numerical inf-sup stability tests for the simplified Stokes problem confirm the existence of many stable discretizations of the velocity and pressure spaces, and in particular show that stability may be achieved by means of knot refinement of the velocity space. Error convergence studies for the full Navier-Stokes problem show optimal convergence rates for this type of discretizations. Finally, a comparison of the results of the method to data from the literature for the lid-driven square cavity for Reynolds numbers up to 10,000 serves as benchmarking of the discretizations and confirms the robustness of the method. (C) 2011 Elsevier B.V All rights reserved.
引用
收藏
页码:3242 / 3253
页数:12
相关论文
共 22 条
[1]   The role of continuity in residual-based variational multiscale modeling of turbulence [J].
Akkerman, I. ;
Bazilevs, Y. ;
Calo, V. M. ;
Hughes, T. J. R. ;
Hulshoff, S. .
COMPUTATIONAL MECHANICS, 2008, 41 (03) :371-378
[2]   The inf-sup condition and its evaluation for mixed finite element methods [J].
Bathe, KJ .
COMPUTERS & STRUCTURES, 2001, 79 (02) :243-252
[3]   NURBS-based isogeometric analysis for the computation of flows about rotating components [J].
Bazilevs, Y. ;
Hughes, T. J. R. .
COMPUTATIONAL MECHANICS, 2008, 43 (01) :143-150
[4]   Weak Dirichlet boundary conditions for wall-bounded turbulent flows [J].
Bazilevs, Y. ;
Michler, C. ;
Calo, V. M. ;
Hughes, T. J. R. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (49-52) :4853-4862
[5]   Isogeometric analysis:: Approximation, stability and error estimates for h-refined meshes [J].
Bazilevs, Y. ;
Da Veiga, L. Beirao ;
Cottrell, J. A. ;
Hughes, T. J. R. ;
Sangalli, G. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (07) :1031-1090
[6]   Weak imposition of Dirichlet boundary conditions in fluid mechanics [J].
Bazilevs, Y. ;
Hughes, T. J. R. .
COMPUTERS & FLUIDS, 2007, 36 (01) :12-26
[7]   Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method [J].
Bazilevs, Y. ;
Akkerman, I. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (09) :3402-3414
[8]  
Bressan A., 2010, IMA J NUMER ANAL, V2
[9]  
Bressan A., COMMUNICATION
[10]   IsoGeometric Analysis: Stable elements for the 2D Stokes equation [J].
Buffa, A. ;
de Falco, C. ;
Sangalli, G. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (11-12) :1407-1422