On the renormalized volume of hyperbolic 3-manifolds

被引:49
作者
Krasnov, Kirill [1 ,2 ]
Schlenker, Jean-Marc [3 ]
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
[2] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[3] Univ Toulouse 3, CNRS, UMR 5219, Math Inst, F-31062 Toulouse, France
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1007/s00220-008-0423-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The renormalized volume of hyperbolic manifolds is a quantity motivated by the AdS/CFT correspondence of string theory and computed via a certain regularization procedure. The main aim of the present paper is to elucidate its geometrical meaning. We use another regularization procedure based on surfaces equidistant to a given convex surface rho N. The renormalized volume computed via this procedure is equal to what we call the W-volume of the convex region N given by the usual volume of N minus the quarter of the integral of the mean curvature over rho N. The W-volume satisfies some remarkable properties. First, this quantity is self-dual in the sense explained in the paper. Second, it verifies some simple variational formulas analogous to the classical geometrical Schlafli identities. These variational formulas are invariant under a certain transformation that replaces the data at rho N by those at infinity of M. We use the variational formulas in terms of the data at infinity to give a simple geometrical proof of results of Takhtajan et al on the Kahler potential on various moduli spaces.
引用
收藏
页码:637 / 668
页数:32
相关论文
共 30 条
  • [1] Anderson MT, 2001, MATH RES LETT, V8, P171
  • [2] [Anonymous], 1994, COLLECTED PAPERS
  • [3] A stress tensor for anti-de Sitter gravity
    Balasubramanian, V
    Kraus, P
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 208 (02) : 413 - 428
  • [4] Bers L., 1960, Bull. Amer. Math. Soc, V66, P94, DOI [10.1090/S0002-9904-1960-10413-2, DOI 10.1090/S0002-9904-1960-10413-2]
  • [5] Besse A L., 1987, EINSTEIN MANIFOLDS
  • [6] Laminations measured from the creasing of dimension 3 hyperbolic variety
    Bonahon, F
    Otal, JP
    [J]. ANNALS OF MATHEMATICS, 2004, 160 (03) : 1013 - 1055
  • [7] Bonahon F, 1998, J DIFFER GEOM, V50, P1
  • [8] Choi YE, 2006, J DIFFER GEOM, V73, P75
  • [9] EPSTEIN CL, 1984, ENVELOPES HOROSPHERE
  • [10] The holographic Weyl anomaly
    Henningson, M
    Skenderis, K
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 1998, (07): : XXXIII - 11