Empirical fractal geometry analysis of some speculative financial bubbles

被引:7
作者
Redelico, Francisco O. [1 ,2 ]
Proto, Araceli N. [1 ]
机构
[1] Univ Buenos Aires, Fac Ingn, Buenos Aires, DF, Argentina
[2] Univ Catolica Argentina, Fac Ciencias Fisicomatemat & Ingn, Buenos Aires, DF, Argentina
关键词
Multifractal analysis; Econophysics; Financial markets; SELF-ORGANIZED CRITICALITY; PHASE-TRANSITIONS; EARTHQUAKES; DYNAMICS; CRASHES; MODEL;
D O I
10.1016/j.physa.2012.01.045
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Empirical evidence of a multifractal signature during increasing of a financial bubble leading to a crash is presented. The April 2000 crash in the NASDAQ composite index and a time series from the discrete Chakrabarti-Stinchcombe model for earthquakes are analyzed using a geometric approach and some common patterns are identified. These patterns can be related the geometry of the rising period of a financial bubbles with the non-concave entropy problem. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:5132 / 5138
页数:7
相关论文
共 30 条
  • [1] [Anonymous], 1883, Math. Ann., DOI DOI 10.1007/BF01446819
  • [2] Of overlapping Cantor sets and earthquakes: analysis of the discrete Chakrabarti-Stinchcombe model
    Bhattacharyya, P
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 348 : 199 - 215
  • [3] DYNAMICS OF EARTHQUAKE FAULTS
    CARLSON, JM
    LANGER, JS
    SHAW, BE
    [J]. REVIEWS OF MODERN PHYSICS, 1994, 66 (02) : 657 - 670
  • [4] Two fractal overlap time series and anticipation of market crashes
    Chakrabarti, Bikas K.
    Chatterjee, Arnab
    Bhattacharyya, Pratip
    [J]. ECONOPHYSICS OF STOCK AND OTHER MARKETS, 2006, : 153 - 158
  • [5] Chakrabarti Bikas K., PRAMANA, V71, P203
  • [6] Stick-slip statistics for two fractal surfaces: a model for earthquakes
    Chakrabarti, BK
    Stinchcombe, RB
    [J]. PHYSICA A, 1999, 270 (1-2): : 27 - 34
  • [7] CHAKRABARTI BK, 2006, PRACTICAL FRUITS ECO, V2, P107
  • [8] PLATEAU ONSET FOR CORRELATION DIMENSION - WHEN DOES IT OCCUR
    DING, MZ
    GREBOGI, C
    OTT, E
    SAUER, T
    YORKE, JA
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (25) : 3872 - 3875
  • [9] Falconer K., 2003, FRACTAL GEOMETRY MAT, DOI DOI 10.1002/0470013850
  • [10] Figueroa M. G., 2003, INT J THEOR APPL FIN, V6, P605