Torsion Pairs and Simple-Minded Systems in Triangulated Categories

被引:15
|
作者
Dugas, Alex [1 ]
机构
[1] Univ Pacific, Dept Math, Stockton, CA 95211 USA
关键词
Simple-minded system; Mutation; Torsion pair; Derived equivalence; Stable equivalence; STABLE EQUIVALENCES; MORITA TYPE; MUTATION; ALGEBRAS;
D O I
10.1007/s10485-014-9365-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be a Hom-finite triangulated Krull-Schmidt category over a field k. Inspired by a definition of Koenig and Liu (Q. J. Math 63(3), 653-674, 2012), we say that a family oe'(R) aS dagger oe'- of pairwise orthogonal bricks is a simple-minded system if its closure under extensions is all of oe'-. We construct torsion pairs in oe'- associated to any subset oe'(3) of a simple-minded system oe'(R), and use these to define left and right mutations of oe'(R) relative to oe'(3). When oe'- has a Serre functor nu and oe'(R) and oe'(3) are invariant under nu a similar to [1], we show that these mutations are again simple-minded systems. We are particularly interested in the case where oe'- = mod-I > for a self-injective algebra I >. In this case, our mutation procedure parallels that introduced by Koenig and Yang for simple-minded collections in D (b) (mod-I >) (Koenig and Yang, 2013). It follows that the mutation of the set of simple I >-modules relative to oe'(3) yields the images of the simple I"-modules under a stable equivalence mod-I" -> mod-I >, where I" is the tilting mutation of I > relative to chi.
引用
收藏
页码:507 / 526
页数:20
相关论文
共 46 条
  • [31] Torsion pairs in repetitive cluster categories of type An
    Chang, Huimin
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2025, 61 (01)
  • [32] Stability approach to torsion pairs on abelian categories
    Chen, Mingfa
    Lin, Yanan
    Ruan, Shiquan
    JOURNAL OF ALGEBRA, 2023, 636 : 560 - 602
  • [33] Torsion Pairs and Quasi-abelian Categories
    Tattar, Aran
    ALGEBRAS AND REPRESENTATION THEORY, 2021, 24 (06) : 1557 - 1581
  • [34] Torsion Pairs and Quasi-abelian Categories
    Aran Tattar
    Algebras and Representation Theory, 2021, 24 : 1557 - 1581
  • [35] Torsion Pairs in Categories of Modules over a Preadditive Category
    Carlos E. Parra
    Manuel Saorín
    Simone Virili
    Bulletin of the Iranian Mathematical Society, 2021, 47 : 1135 - 1171
  • [36] Torsion Pairs in Categories of Modules over a Preadditive Category
    Parra, Carlos E.
    Saorin, Manuel
    Virili, Simone
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (04) : 1135 - 1171
  • [37] Negative cluster categories from simple minded collection quadruples
    Fedele, Francesca
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (09) : 3761 - 3774
  • [38] Torsion-simple objects in abelian categories
    Pavon, Sergio
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2025, 229 (01)
  • [39] SILTING OBJECTS, SIMPLE-MINDED COLLECTIONS, t-STRUCTURES AND CO-t-STRUCTURES FOR FINITE-DIMENSIONAL ALGEBRAS
    Koenig, Steffen
    Yang, Dong
    DOCUMENTA MATHEMATICA, 2014, 19 : 403 - 438
  • [40] Split t-structures and torsion pairs in hereditary categories
    Assem, Ibrahim
    Jose Souto-Salorio, Maria
    Trepode, Sonia
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (11)