Discover mouse gene coexpression landscapes using dictionary learning and sparse coding

被引:6
作者
Li, Yujie [1 ,2 ]
Chen, Hanbo [1 ,2 ]
Jiang, Xi [1 ,2 ]
Li, Xiang [1 ,2 ]
Lv, Jinglei [1 ,2 ,3 ]
Peng, Hanchuan [4 ]
Tsien, Joe Z. [5 ]
Liu, Tianming [1 ,2 ]
机构
[1] Univ Georgia, Dept Comp Sci, Cort Architecture Imaging & Discovery Lab, Athens, GA 30602 USA
[2] Univ Georgia, Bioimaging Res Ctr, Athens, GA 30602 USA
[3] Northwestern Polytech Univ, Sch Automat, Xian, Shaanxi, Peoples R China
[4] Allen Inst Brain Sci, Seattle, WA 98109 USA
[5] Augusta Univ, Med Coll Georgia, Brain & Behav Discovery Inst, Augusta, GA 30912 USA
关键词
Gene coexpression network; Sparse coding; Transcriptome; HUMAN BRAIN; EXPRESSION PATTERNS; TRANSCRIPTOME; ARCHITECTURE; NETWORK; CORTEX; DIFFERENTIATION; HIPPOCAMPUS; ENRICHMENT; EVOLUTION;
D O I
10.1007/s00429-017-1460-9
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
Gene coexpression patterns carry rich information regarding enormously complex brain structures and functions. Characterization of these patterns in an unbiased, integrated, and anatomically comprehensive manner will illuminate the higher-order transcriptome organization and offer genetic foundations of functional circuitry. Here using dictionary learning and sparse coding, we derived coexpression networks from the space-resolved anatomical comprehensive in situ hybridization data from Allen Mouse Brain Atlas dataset. The key idea is that if two genes use the same dictionary to represent their original signals, then their gene expressions must share similar patterns, thereby considering them as "coexpressed." For each network, we have simultaneous knowledge of spatial distributions, the genes in the network and the extent a particular gene conforms to the coexpression pattern. Gene ontologies and the comparisons with published gene lists reveal biologically identified coexpression networks, some of which correspond to major cell types, biological pathways, and/or anatomical regions.
引用
收藏
页码:4253 / 4270
页数:18
相关论文
共 50 条
  • [1] Quantifying the relationship between co-expression, co-regulation and gene function
    Allocco, DJ
    Kohane, IS
    Butte, AJ
    [J]. BMC BIOINFORMATICS, 2004, 5 (1)
  • [2] Development of multiscale biological image data analysis: Review of 2006 International Workshop on Multiscale Biological Imaging, Data Mining and Informatics, Santa Barbara, USA (BII06)
    Auer, Manfred
    Peng, Hanchuan
    Singh, Ambuj
    [J]. BMC CELL BIOLOGY, 2007, 8 (Suppl 1)
  • [3] Complex Network Analysis of CA3 Transcriptome Reveals Pathogenic and Compensatory Pathways in Refractory Temporal Lobe Epilepsy
    Bando, Silvia Yumi
    Silva, Filipi Nascimento
    Costa, Luciano Da Fontoura
    Silva, Alexandre V.
    Pimentel-Silva, Luciana R.
    Castro, Luiz H. M.
    Wen, Hung-Tzu
    Amaro, Edson, Jr.
    Moreira-Filho, Carlos Alberto
    [J]. PLOS ONE, 2013, 8 (11):
  • [4] Transcriptional Architecture of the Primate Neocortex
    Bernard, Amy
    Lubbers, Laura S.
    Tanis, Keith Q.
    Luo, Rui
    Podtelezhnikov, Alexei A.
    Finney, Eva M.
    McWhorter, Mollie M. E.
    Serikawa, Kyle
    Lemon, Tracy
    Morgan, Rebecca
    Copeland, Catherine
    Smith, Kimberly
    Cullen, Vivian
    Davis-Turak, Jeremy
    Lee, Chang-Kyu
    Sunkin, Susan M.
    Loboda, Andrey P.
    Levine, David M.
    Stone, David J.
    Hawrylycz, Michael J.
    Roberts, Christopher J.
    Jones, Allan R.
    Geschwind, Daniel H.
    Lein, Ed S.
    [J]. NEURON, 2012, 73 (06) : 1083 - 1099
  • [5] Incipient Alzheimer's disease: Microarray correlation analyses reveal major transcriptional and tumor suppressor responses
    Blalock, EM
    Geddes, JW
    Chen, KC
    Porter, NM
    Markesbery, WR
    Landfield, PW
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (07) : 2173 - 2178
  • [6] Clustering of spatial gene expression patterns in the mouse brain and comparison with classical neuroanatomy
    Bohland, Jason W.
    Bokil, Hemant
    Pathak, Sayan D.
    Lee, Chang-Kyu
    Ng, Lydia
    Lau, Christopher
    Kuan, Chihchau
    Hawrylycz, Michael
    Mitra, Partha P.
    [J]. METHODS, 2010, 50 (02) : 105 - 112
  • [7] Functional architecture and evolution of transcriptional elements that drive gene coexpression
    Brown, Christopher D.
    Johnson, David S.
    Sidow, Arend
    [J]. SCIENCE, 2007, 317 (5844) : 1557 - 1560
  • [8] A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function
    Cahoy, John D.
    Emery, Ben
    Kaushal, Amit
    Foo, Lynette C.
    Zamanian, Jennifer L.
    Christopherson, Karen S.
    Xing, Yi
    Lubischer, Jane L.
    Krieg, Paul A.
    Krupenko, Sergey A.
    Thompson, Wesley J.
    Barres, Ben A.
    [J]. JOURNAL OF NEUROSCIENCE, 2008, 28 (01) : 264 - 278
  • [9] Genotype to phenotype via network analysis
    Carter, Hannah
    Hofree, Matan
    Ideker, Trey
    [J]. CURRENT OPINION IN GENETICS & DEVELOPMENT, 2013, 23 (06) : 611 - 621
  • [10] Chen HB, 2012, LECT NOTES COMPUT SC, V7512, P297, DOI [10.1109/TMI.2013.2259248, 10.1007/978-3-642-33454-2_37]