Strong Morita equivalence of semigroups with local units

被引:19
作者
Laan, Valdis [2 ]
Laszlo Marki [1 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1364 Budapest, Hungary
[2] Univ Tartu, Inst Math, EE-50090 Tartu, Estonia
关键词
RINGS;
D O I
10.1016/j.jpaa.2011.02.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study Morita contexts for semigroups. We prove a Rees matrix cover connection between strongly Morita equivalent semigroups and investigate how the existence of a unitary Morita semigroup over a given semigroup is related to the existence of a 'good' Rees matrix cover of this semigroup. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2538 / 2546
页数:9
相关论文
共 13 条
[1]   MORITA EQUIVALENCE FOR RINGS WITH LOCAL UNITS [J].
ABRAMS, GD .
COMMUNICATIONS IN ALGEBRA, 1983, 11 (08) :801-837
[2]  
Anh P.N., 1987, Tsukuba J. Math., V11, P1
[3]  
Chen YQ, 2001, ACTA MATH SIN, V17, P437, DOI 10.1007/PL00011620
[4]   MORITA EQUIVALENCE FOR IDEMPOTENT RINGS [J].
GARCIA, JL ;
SIMON, JJ .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1991, 76 (01) :39-56
[5]  
HOTZEL E, 1979, C MATH SOC J BOLYAI, V20, P247
[6]   Context equivalence of semigroups [J].
Laan, Valdis .
PERIODICA MATHEMATICA HUNGARICA, 2010, 60 (01) :81-94
[7]   Morita equivalence of semigroups with local units [J].
Lawson, M. V. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (04) :455-470
[8]   Enlargements and coverings by Rees matrix semigroups [J].
Lawson, MV ;
Márki, L .
MONATSHEFTE FUR MATHEMATIK, 2000, 129 (03) :191-195
[9]  
M ARKI L., 1988, Contributions to General Algebra, V6, P197
[10]  
Neklyudova V. V., 1999, FUNDAM PRIKL MAT, V5, P539