Brain-Computer Interface on the Basis of EEG System "Encephalan"

被引:6
|
作者
Maksimenko, Vladimir [1 ]
Badarin, Artem [1 ]
Nedaivozov, Vladimir [1 ]
Kirsanov, Daniil [1 ]
Hramov, Alexander [1 ]
机构
[1] Yurij Gagarin State Tech Univ Saratov, REC Artificial Intelligence Syst & Neurotechnol, Politech Skaya Str 77, Saratov 410056, Russia
来源
SARATOV FALL MEETING 2017: LASER PHYSICS AND PHOTONICS XVIII; AND COMPUTATIONAL BIOPHYSICS AND ANALYSIS OF BIOMEDICAL DATA IV | 2018年 / 10717卷
关键词
Electroencephalogram; continuous wavelet analysis; brain-computer interface; concentration of attention; PERCEPTION;
D O I
10.1117/12.2314651
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We have proposed brain-computer interface (BCI) for the estimation of the brain response on the presented visual tasks. Proposed BCI is based on the EEG recorder Encephalan-EEGR-19/26 (Medicom MTD, Russia) supplemented by a special home-made developed acquisition software. BCI is tested during experimental session while subject is perceiving the bistable visual stimuli and classifying them according to the interpretation. We have subjected the participant to the different external conditions and observed the significant decrease in the response, associated with the perceiving the bistable visual stimuli, during the presence of distraction. Based on the obtained results we have proposed possibility to use of BCI for estimation of the human alertness during solving the tasks required substantial visual attention.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Feature Extraction from EEG Data for a P300 Based Brain-Computer Interface
    Hajian, Ali
    Yong, Suet-Peng
    TRENDS AND APPLICATIONS IN KNOWLEDGE DISCOVERY AND DATA MINING, 2017, 2017, 10526 : 39 - 50
  • [42] Asynchronous Brain-computer Interface Intelligent Wheelchair System Based on Alpha Wave and SSVEP EEG Signals
    Gao Nuo
    Zhai Wenwen
    Lu Shouyin
    2019 IEEE 4TH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP 2019), 2019, : 611 - 616
  • [43] Hand Movement Trajectory Reconstruction from EEG for Brain-Computer Interface Systems
    Robinson, Neethu
    Vinod, A. P.
    Guan, Cuntai
    2013 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2013), 2013, : 3127 - 3132
  • [44] Feasibility of an EEG-based brain-computer interface in the intensive care unit
    Chatelle, Camille
    Spencer, Camille A.
    Cash, Sydney S.
    Hochberg, Leigh R.
    Edlow, Brian L.
    CLINICAL NEUROPHYSIOLOGY, 2018, 129 (08) : 1519 - 1525
  • [45] Using Brain-Computer Interface (BCI) and Artificial Intelligence for EEG Signal Analysis
    Kurczak, Jakub
    Bialas, Katarzyna
    Chalupnik, Rafal
    Kedziora, Michal
    RECENT CHALLENGES IN INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2022, 2022, 1716 : 214 - 226
  • [46] Research on the EEG Recognition for Brain-Computer Interface of Speech Based on DIVA Model
    Zhang, Shaobai
    Zeng, You
    PROCEEDINGS OF THE 2015 CHINESE INTELLIGENT AUTOMATION CONFERENCE: INTELLIGENT TECHNOLOGY AND SYSTEMS, 2015, 338 : 245 - 256
  • [47] Symmetrical feature for interpreting motor imagery EEG signals in the brain-computer interface
    Park, Seung-Min
    Yu, Xinyang
    Chum, Pharino
    Lee, Woo-Young
    Sim, Kwee-Bo
    OPTIK, 2017, 129 : 163 - 171
  • [48] Pattern Recognition of Motor Imagery EEG Signal in Noninvasive Brain-Computer Interface
    Qu, Shen
    Liu, Jingmeng
    Chen, Weihai
    Zhang, Jianbin
    Chen, Weidong
    PROCEEDINGS OF THE 2018 13TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2018), 2018, : 1814 - 1819
  • [49] Design of Low-Power EEG-Based Brain-Computer Interface
    Yadav, Piyush
    Sehgal, Mayank
    Sharma, Prateek
    Kashish, Komal
    ADVANCES IN SYSTEM OPTIMIZATION AND CONTROL, 2019, 509 : 213 - 221
  • [50] Application of t-statistics for processing of EEG signal in brain-computer interface
    Kolodziej, Marcin
    Majkowski, Andrzej
    Rak, Remigiusz J.
    PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (9A): : 187 - 189