A comparison result for elliptic equations in the infinite dimensional Gauss space

被引:3
作者
Feo, F. [1 ]
机构
[1] Univ Napoli Parthenope, Dipartimento Tecnol, Ctr Direz, I-80143 Naples, Italy
关键词
Gauss measure; Elliptic equation; Wiener space; Rearrangement; Isoperimetric inequality; Logarithmic Sobolev inequality; PARABOLIC EQUATIONS; SYMMETRIZATION; REGULARITY;
D O I
10.1016/j.na.2010.06.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain a comparison result for a class of Dirichlet problems for the operator -div(gamma) (A(x) del w) in an infinite dimensional separable Hilbert space X with the Gauss measure gamma and a suitable differentiable structure. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2298 / 2309
页数:12
相关论文
共 31 条
[1]  
ALVINO A, 1990, ANN I H POINCARE-AN, V7, P37
[2]  
Alvino A., 1977, B UNIONE MAT ITAL, V14, P148
[3]  
AMBROSIO L, 2008, BV FUNCT ABSTR WIEN
[4]  
[Anonymous], 1998, GAUSSIAN MEASURES
[5]  
BETTA MF, 1994, B SCI MATH, V118, P539
[6]   A comparison result related to Gauss measure [J].
Betta, MF ;
Brock, F ;
Mercaldo, A ;
Posteraro, MR .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (06) :451-456
[7]  
BORELL C, 1979, INVENT MATH, V30, P194
[8]   On the cases of equality in Bobkov's inequality and Gaussian rearrangement [J].
Carlen, EA ;
Kerce, C .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2001, 13 (01) :1-18
[9]  
Chiacchio F, 2004, DIFFER INTEGRAL EQU, V17, P241
[10]  
CHONG KM, 1988, J REINE ANGEW MATH, V384, P153