Reducible linear quasi-periodic systems with positive Lyapunov exponent and varying rotation number

被引:0
|
作者
Broer, HW
Simó, C
机构
[1] Univ Groningen, Dept Math & Comp Sci, NL-9700 AV Groningen, Netherlands
[2] Univ Barcelona, Dept Matemat Aplicada & Analisi, E-08007 Barcelona, Spain
关键词
D O I
10.1006/jdeq.2000.3877
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A linear system in two dimensions is studied. The coefficients are 2 pi -periodic in three angles, 0(j), = 1, 2, 3, and these angles are linear with respect to time, with incommensurable frequencies. The system has positive Lyapunov coefficients and the rotation number changes in a continuous way when some parameter moves. A lift to T-3 x R-2, however, is only of class L-p, for any p < 2. (C) 2000 Academic Press.
引用
收藏
页码:60 / 66
页数:7
相关论文
共 50 条