A stochastic exponential Euler scheme for simulation of stiff biochemical reaction systems

被引:29
|
作者
Komori, Yoshio [1 ]
Burrage, Kevin [2 ,3 ]
机构
[1] Kyushu Inst Technol, Dept Syst Design & Informat, Iizuka, Fukuoka 8208502, Japan
[2] Univ Oxford, Dept Comp Sci, Oxford OX1 3QD, England
[3] Queensland Univ Technol, Sch Math, Brisbane, Qld 4001, Australia
关键词
Explicit method; Mean square stability; Chemical Langevin equation; RUNGE-KUTTA METHODS; S-ROCK METHODS; LOCAL LINEARIZATION SCHEMES; DIFFERENTIAL-EQUATIONS; CHEBYSHEV METHODS; APPROXIMATION; CONVERGENCE; STABILITY; EXPLICIT;
D O I
10.1007/s10543-014-0485-1
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In order to simulate stiff biochemical reaction systems, an explicit exponential Euler scheme is derived for multi-dimensional, non-commutative stochastic differential equations with a semilinear drift term. The scheme is of strong order one half and A-stable in mean square. The combination with this and the projection method shows good performance in numerical experiments dealing with an alternative formulation of the chemical Langevin equation for a human ether a-go-go related gene ion channel model.
引用
收藏
页码:1067 / 1085
页数:19
相关论文
共 50 条
  • [21] Hybrid deterministic/stochastic simulation of complex biochemical systems
    Lecca, Paola
    Bagagiolo, Fabio
    Scarpa, Marina
    MOLECULAR BIOSYSTEMS, 2017, 13 (12) : 2672 - 2686
  • [22] Unbiased τ-leap methods for stochastic simulation of biochemical systems
    Xu, Zhouyi
    Cai, Xiaodong
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 657 - 660
  • [23] Algorithms and software for stochastic simulation of biochemical reacting systems
    Li, Hong
    Cao, Yang
    Petzold, Linda R.
    Gillespie, Daniel T.
    BIOTECHNOLOGY PROGRESS, 2008, 24 (01) : 56 - 61
  • [24] STOCHASTIC METHOD FOR SIMULATION OF BIOCHEMICAL SYSTEMS ON A DIGITAL COMPUTER
    KIBBY, MR
    NATURE, 1969, 222 (5190) : 298 - +
  • [25] Numerical ergodicity of a full-discrete exponential Euler scheme for stochastic Burgers-Huxley equation
    Wang, Xue
    Wu, Shang
    Huang, Jianhua
    Zheng, Jiaxing
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (04) : 5202 - 5234
  • [26] PARAREAL EXPONENTIAL θ-SCHEME FOR LONGTIME SIMULATION OF STOCHASTIC SCHRODINGER EQUATIONS WITH WEAK DAMPING
    Hong, Jialin
    Wang, Xu
    Zhang, Liying
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (06): : B1155 - B1177
  • [27] Simulation of biochemical reaction kinetics in microfluidic systems
    Makhijani, VB
    Raghavan, J
    Przekwas, A
    Przekwas, A
    MICROREACTION TECHNOLOGY: INDUSTRIAL PROSPECTS, 2000, : 441 - 450
  • [28] Toward a Fast Stochastic Simulation Processor for Biochemical Reaction Networks
    Park, Hyungman
    Gerstlauer, Andreas
    PROCEEDINGS OF THE 2013 IEEE 24TH INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURES AND PROCESSORS (ASAP 13), 2013, : 50 - 58
  • [29] HSimulator: Hybrid Stochastic/Deterministic Simulation of Biochemical Reaction Networks
    Marchetti, Luca
    Lombardo, Rosario
    Priami, Corrado
    COMPLEXITY, 2017,
  • [30] A modified backward Euler scheme for advection-reaction-diffusion systems
    Madzvamuse, Anotida
    MATHEMATICAL MODELING OF BIOLOGICAL SYSTEMS, VOL I: CELLULAR BIOPHYSICS, REGULATORY NETWORKS, DEVELOPMENT, BIOMEDICINE, AND DATA ANALYSIS, 2007, : 183 - 189