A stochastic exponential Euler scheme for simulation of stiff biochemical reaction systems

被引:29
|
作者
Komori, Yoshio [1 ]
Burrage, Kevin [2 ,3 ]
机构
[1] Kyushu Inst Technol, Dept Syst Design & Informat, Iizuka, Fukuoka 8208502, Japan
[2] Univ Oxford, Dept Comp Sci, Oxford OX1 3QD, England
[3] Queensland Univ Technol, Sch Math, Brisbane, Qld 4001, Australia
关键词
Explicit method; Mean square stability; Chemical Langevin equation; RUNGE-KUTTA METHODS; S-ROCK METHODS; LOCAL LINEARIZATION SCHEMES; DIFFERENTIAL-EQUATIONS; CHEBYSHEV METHODS; APPROXIMATION; CONVERGENCE; STABILITY; EXPLICIT;
D O I
10.1007/s10543-014-0485-1
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In order to simulate stiff biochemical reaction systems, an explicit exponential Euler scheme is derived for multi-dimensional, non-commutative stochastic differential equations with a semilinear drift term. The scheme is of strong order one half and A-stable in mean square. The combination with this and the projection method shows good performance in numerical experiments dealing with an alternative formulation of the chemical Langevin equation for a human ether a-go-go related gene ion channel model.
引用
收藏
页码:1067 / 1085
页数:19
相关论文
共 50 条
  • [1] A stochastic exponential Euler scheme for simulation of stiff biochemical reaction systems
    Yoshio Komori
    Kevin Burrage
    BIT Numerical Mathematics, 2014, 54 : 1067 - 1085
  • [2] Exponential Euler method for stiff stochastic differential equations with additive fractional Brownian noise
    Kamrani, Minoo
    Debrabant, Kristian
    Jamshidi, Nahid
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2024, 101 (03) : 357 - 371
  • [3] Semi-implicit Euler-Maruyama scheme for stiff stochastic equations
    Hu, YZ
    STOCHASTIC ANALYSIS AND RELATED TOPICS V: THE SILIVRI WORKSHOP, 1994, 1996, 38 : 183 - 202
  • [4] Accelerated exponential Euler scheme for stochastic heat equation: convergence rate of the density
    Chen, Chuchu
    Cui, Jianbo
    Hong, Jialin
    Sheng, Derui
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (02) : 1181 - 1220
  • [5] Balanced-Euler Approximation Schemes for Stiff Systems of Stochastic Differential Equations
    Ranjbar, Hassan
    Torkzadeh, Leila
    Nouri, Kazem
    FILOMAT, 2022, 36 (18) : 6791 - 6804
  • [6] Balanced-Euler Approximation Schemes for Stiff Systems of Stochastic Differential Equations
    Ranjbar, Hassan
    Torkzadeh, Leila
    Nouri, Kazem
    FILOMAT, 2022, 36 (19) : 6791 - 6804
  • [7] Accelerated stochastic simulation of the stiff enzyme-substrate reaction
    Cao, Y
    Gillespie, DT
    Petzold, LR
    JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (14):
  • [9] The composite Euler method for stiff stochastic differential equations
    Burrage, K
    Tian, TH
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 131 (1-2) : 407 - 426
  • [10] Fast stochastic simulation of biochemical reaction systems by alternative formulations of the chemical Langevin equation
    Melykuti, Bence
    Burrage, Kevin
    Zygalakis, Konstantinos C.
    JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (16):