Pulsed-Field Magnetometer Measurements and Pragmatic Hysteresis Modeling of Rare-Earth Permanent Magnets

被引:11
作者
Glehn, G. [1 ]
Steentjes, S. [1 ]
Hameyer, K. [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Elect Machines, D-52062 Aachen, Germany
关键词
Finite-element analysis (FEA); first-order return curves (FORCs); magnetic hysteresis; magnetic measurements; permanent magnets (PMs); rare-earth magnets; GRAPH SYSTEM; MAGNETIZATION;
D O I
10.1109/TMAG.2017.2766839
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Rare-earth permanent magnets (REPMs) are central to the electromagnetic energy conversion process in permanent-magnet synchronous and flux-switching machines. To design the magnetic circuit and a magnetizing circuit for post-assembly magnetization, it is indispensable to describe the magnetization behavior of the REPMs accurately. Commonly, simplified models are used that are often not capable to replicate the non-linearity, magnetic hysteresis, and magnetic anisotropy. In this paper, four different REPMs are methodologically characterized by using a pulsed-field magnetometer. Their first-order return curves and magnetization behavior, starting from the virgin state, are recorded and used to parameterize and validate two different pragmatic hysteresis models.
引用
收藏
页数:4
相关论文
共 11 条
[1]   Open-loop pulsed hysteresis graph system for the magnetization of rare-earth magnets [J].
Bretchko, P ;
Ludwig, R .
IEEE TRANSACTIONS ON MAGNETICS, 2000, 36 (04) :2042-2051
[2]   Pulsed field magnetometer for industrial use [J].
Cornelius, R ;
Dudding, J ;
Knell, P ;
Grossinger, R ;
Enzberg-Mahlke, B ;
Fernengel, W ;
Küpferling, M ;
Taraba, M ;
Toussaint, JC ;
Wimmer, A ;
Edwards, D .
IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (05) :2462-2464
[3]  
Dospial M., 2013, P 15 CZECH SLOV C MA, P17
[4]   Anhysteretic Functions for the Jiles-Atherton Model [J].
Kokornaczyk, Edmund ;
Gutowski, Marek Wojciech .
IEEE TRANSACTIONS ON MAGNETICS, 2015, 51 (02)
[5]  
Lin DS, 2014, 2014 INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES (ICEM), P1050, DOI 10.1109/ICELMACH.2014.6960311
[6]   Improved Vector Play Model and Parameter Identification for Magnetic Hysteresis Materials [J].
Lin, Dingsheng ;
Zhou, Ping ;
Bergqvist, Anders .
IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (02) :357-360
[7]   Magnetic and eddy current effects in an open-loop pulsed hysteresis graph system for magnetization of rare-earth magnets [J].
Ludwig, R ;
Bretchko, P ;
Makarov, S .
IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (01) :211-220
[8]   Dynamic Hysteresis Loops Modeling by Means of Extended Hyperbolic Model [J].
Nova, I. ;
Havlicek, V. ;
Zemanek, I. .
IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (01) :148-151
[9]  
Petrescu L, 2015, 2015 9TH INTERNATIONAL SYMPOSIUM ON ADVANCED TOPICS IN ELECTRICAL ENGINEERING (ATEE), P521, DOI 10.1109/ATEE.2015.7133863
[10]  
Takacs J., 2003, Mathematics of hysteretic phenomena