Bio-Inspired Binder Design for a Robust Conductive Network in Silicon-Based Anodes

被引:43
作者
Song, Zhibo [1 ]
Zhang, Taohang [1 ]
Wang, Lu [1 ]
Zhao, Yan [2 ]
Li, Zikun [3 ]
Zhang, Meng [3 ]
Wang, Ke [1 ]
Xue, Shida [1 ]
Fang, Jianjun [1 ]
Ji, Yuchen [1 ]
Pan, Feng [1 ]
Yang, Luyi [1 ]
机构
[1] Peking Univ Shenzhen Grad Sch, Sch Adv Mat, Shenzhen 518055, Peoples R China
[2] Imperial Coll London, Dept Mech Engn, London SW7 2BX, England
[3] BTR New Mat Grp Co Ltd, Shenzhen 518106, Peoples R China
基金
中国博士后科学基金;
关键词
conductive binders; cycle stability; lithium-ion batteries; polymer design; Si-based anodes; HIGH-CAPACITY; SI ANODES; LITHIUM; PERFORMANCE; POLYMER; CHEMISTRY;
D O I
10.1002/smtd.202101591
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Due to the severe volume variations during electrochemical processes, Si-based anodes suffer from poor cycling performance as the result of a collapsed conductive network. In this regard, a key strategy for fully exploiting the capacity potential of Si-based anodes is to construct a robust conductive network through rational binder design. In this work, a bio-inspired conductive binder (PFPQDA) is designed by introducing dopamine-functionalized fluorene structure units (DA) into a conductivity enhanced polyfluorene-typed copolymer (PFPQ) to enhance its mechanical properties. Through constructing hierarchical binding networks and resilient electron transportations within both nano-sized Si and micro-sized SiOx electrodes via interweaved interactions, the PFPQDA successfully suppresses the electrode expansion and maintains the integrity of conductive pathways. Consequently, owing to the favorable properties of PFPQDA, Si-based anodes exhibit improved cycling performance and rate capability with an areal capacity over 2.5 mAh cm(-2).
引用
收藏
页数:8
相关论文
共 45 条
[1]   In Situ Deactivation of Catechol-Containing Adhesive Using Electrochemistry [J].
Bhuiyan, Md Saleh Akram ;
Roland, James D. ;
Liu, Bo ;
Reaume, Max ;
Zhang, Zhongtian ;
Kelley, Jonathan D. ;
Lee, Bruce P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (10) :4631-4638
[2]   Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries [J].
Buqa, H. ;
Holzapfel, M. ;
Krumeich, F. ;
Veit, C. ;
Novak, P. .
JOURNAL OF POWER SOURCES, 2006, 161 (01) :617-622
[3]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[4]   Cross-linked hyperbranched polyethylenimine as an efficient multidimensional binder for silicon anodes in lithium-ion batteries [J].
Chen, Chao ;
Chen, Feng ;
Liu, Lianmei ;
Zhao, Jianwei ;
Wang, Fei .
ELECTROCHIMICA ACTA, 2019, 326
[5]   Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices [J].
Chen, Hao ;
Ling, Min ;
Hencz, Luke ;
Ling, Han Yeu ;
Li, Gaoran ;
Lin, Zhan ;
Liu, Gao ;
Zhang, Shanqing .
CHEMICAL REVIEWS, 2018, 118 (18) :8936-8982
[6]   "Sticky" carbon coating enables high-area-capacity lithium storage of silicon-graphitic carbon hybrid [J].
Chen, Zidong ;
Li, Lun ;
Zhang, Zheng ;
Li, Hao ;
Xie, Bo ;
Chen, Yungui ;
Davoodi, Ali ;
Hosseinpour, Saman ;
Liu, Wei .
CARBON, 2021, 184 :91-101
[7]   Recent Advances in Silicon-Based Electrodes: From Fundamental Research toward Practical Applications [J].
Ge, Mingzheng ;
Cao, Chunyan ;
Biesold, Gill M. ;
Sewell, Christopher D. ;
Hao, Shu-Meng ;
Huang, Jianying ;
Zhang, Wei ;
Lai, Yuekun ;
Lin, Zhiqun .
ADVANCED MATERIALS, 2021, 33 (16)
[8]   A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes [J].
Higgins, Thomas M. ;
Park, Sang-Hoon ;
King, Paul J. ;
Zhang, Chuanfan ;
MoEvoy, Niall ;
Berner, Nina C. ;
Daly, Dermot ;
Shmeliov, Aleksey ;
Khan, Umar ;
Duesberg, Georg ;
Nicolosi, Valeria ;
Coleman, Jonathan N. .
ACS NANO, 2016, 10 (03) :3702-3713
[9]   Hydroxyphthalocyanines as potential photodynamic agents for cancer therapy [J].
Hu, M ;
Brasseur, N ;
Yildiz, SZ ;
van Lier, JE ;
Leznoff, CC .
JOURNAL OF MEDICINAL CHEMISTRY, 1998, 41 (11) :1789-1802
[10]   A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries [J].
Kovalenko, Igor ;
Zdyrko, Bogdan ;
Magasinski, Alexandre ;
Hertzberg, Benjamin ;
Milicev, Zoran ;
Burtovyy, Ruslan ;
Luzinov, Igor ;
Yushin, Gleb .
SCIENCE, 2011, 334 (6052) :75-79