Effect of Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth-Promoting Bacteria (PGPR) Inoculations on Elaeagnus aangustifolia L. in Saline Soil

被引:49
|
作者
Pan, Jing [1 ,2 ]
Huang, Cuihua [1 ]
Peng, Fei [1 ,3 ]
Zhang, Wenjuan [1 ,2 ]
Luo, Jun [4 ]
Ma, Shaoxiu [1 ]
Xue, Xian [1 ]
机构
[1] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Key Lab Desert & Desertificat, Drylands Salinizat Res Stn, Lanzhou 730000, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Tottori Univ, Arid Land Res Ctr, Int Platform Dryland Res & Educ, Tottori 6808550, Japan
[4] China West Normal Univ, Sch Land & Resources, Nanchong 637002, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 03期
关键词
halophyte; arbuscular mycorrhizal fungi; plant growth promoting rhizobacteria; morphological characteristics; photosynthesis; soil enzymes; SALT TOLERANCE; MICROBIAL COMMUNITY; ENZYME-ACTIVITIES; ROOT-SYSTEM; VULGARIS L; STRESS; PHOTOSYNTHESIS; RESPONSES; BIOMASS; IMPACT;
D O I
10.3390/app10030945
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) are considered highly-efficient agents for conferring salt tolerance in host plants and improving soil fertility in rhizosphere. However, information about the inoculation of beneficial microbes on halophytes in arid and semi-arid regions remains inadequate. The objective of this study was to evaluate the influence of AMF (Glomus mosseae) inoculation, alone or in combination with PGPR (Bacillus amyloliquefaciens), on biomass accumulation, morphological characteristics, photosynthetic capacity, and rhizospheric soil enzyme activities of Elaeagnus angustifolia L., a typical halophyte in the northwest of China. The results indicate that, for one-year-old seedlings of Elaeagnus angustifolia L., AMF significantly promoted biomass accumulation in aboveground organs, increased the numbers of leaves and branches, and improved the leaf areas, stem diameters and plant height. AMF-mediated morphological characteristics of aboveground organs favored light interception and absorption and maximized the capacities for photosynthesis, transpiration, carbon dioxide assimilation and gas exchange of Elaeagnus angustifolia L. seedlings in saline soil. AMF also promoted root growth, modified root architecture, and enhanced soil enzyme activities. Elaeagnus angustifolia L. was more responsive to specific inoculation by AMF than by a combination of AMF and PGPR or by solely PGPR in saline soils. Therefore, we suggest that G. mosseae can be used in saline soil to enhance Elaeagnus angustifolia L. seedlings growth and improve soil nutrient uptake. This represents a biological technique to aid in restoration of saline-degraded areas.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation
    Xun, Feifei
    Xie, Baoming
    Liu, Shasha
    Guo, Changhong
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2015, 22 (01) : 598 - 608
  • [2] Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation
    Feifei Xun
    Baoming Xie
    Shasha Liu
    Changhong Guo
    Environmental Science and Pollution Research, 2015, 22 : 598 - 608
  • [3] Effect of arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on microorganism of phenanthrene and pyrene contaminated soils
    Li, Wei
    Li, Wen-bin
    Xing, Li-jun
    Guo, Shao-xia
    INTERNATIONAL JOURNAL OF PHYTOREMEDIATION, 2023, 25 (02) : 240 - 251
  • [4] Cooperation between arbuscular mycorrhizal fungi and plant growth-promoting bacteria and their effects on plant growth and soil quality
    Yu, Lu
    Zhang, Hui
    Zhang, Wantong
    Liu, Kesi
    Liu, Miao
    Shao, Xinqing
    PEERJ, 2022, 10
  • [5] Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth-promoting Rhizobacteria (PGPR) as an Alternative to Mineral Fertilizers to Improve the Growth, Essential Oil Profile, and Phenolic Content of Satureja Macrantha L.
    Maryam Baniyaghob Abkenar
    Hamid Mozafari
    Khalil Karimzadeh
    Faezeh Rajabzadeh
    Raziyeh Azimi
    Journal of Crop Health, 2024, 76 : 347 - 356
  • [6] Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth-promoting Rhizobacteria (PGPR) as an Alternative to Mineral Fertilizers to Improve the Growth, Essential Oil Profile, and Phenolic Content of Satureja Macrantha L.
    Abkenar, Maryam Baniyaghob
    Mozafari, Hamid
    Karimzadeh, Khalil
    Rajabzadeh, Faezeh
    Azimi, Raziyeh
    JOURNAL OF CROP HEALTH, 2024, 76 (01) : 347 - 356
  • [7] Effect of Plant growth promoting rhizobacteria (PGPR) and mycorrhizal fungi inoculations on essential oil in Melissa officinalis L. under drought stress
    Gorgi, Olia Eshaghi
    Fallah, Hormoz
    Niknejad, Yosoof
    Tari, Davood Barari
    BIOLOGIA, 2022, 77 (01) : 11 - 20
  • [8] Effect of Plant growth promoting rhizobacteria (PGPR) and mycorrhizal fungi inoculations on essential oil in Melissa officinalis L. under drought stress
    Olia Eshaghi Gorgi
    Hormoz Fallah
    Yosoof Niknejad
    Davood Barari Tari
    Biologia, 2022, 77 : 11 - 20
  • [9] Effect of Plant Growth Promoting Rhizobacteria (PGPR) and Arbuscular Mycorrhizal Fungi (AMF) on Salt Stress Tolerance of Casuarina obesa (Miq.)
    Diagne, Nathalie
    Ndour, Maty
    Djighaly, Pape Ibrahima
    Ngom, Daouda
    Ngom, Marie Claver Ndebane
    Ndong, Ganna
    Svistoonoff, Sergio
    Cherif-Silini, Hafsa
    FRONTIERS IN SUSTAINABLE FOOD SYSTEMS, 2020, 4
  • [10] Synergistic effects of arbuscular mycorrhizal fungi and plant growth-promoting bacteria benefit maize growth under increasing soil salinity
    Moreira, Helena
    Pereira, Sofia I. A.
    Vega, Alberto
    Castro, Paula M. L.
    Marques, Ana P. G. C.
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2020, 257