A two-grid MMOC finite element method for nonlinear variable-order time-fractional mobile immobile advection-diffusion equations

被引:73
作者
Chen, Chuanjun [1 ]
Liu, Huan [2 ]
Zheng, Xiangcheng [3 ]
Wang, Hong [3 ]
机构
[1] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[3] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Two-grid method; Modified method of characteristics; Time fractional differential equation; Variable order; Error estimates; DIFFERENCE METHOD; NUMERICAL-METHODS; SOLUTE TRANSPORT; GALERKIN METHOD; VOLUME METHOD; DISPERSION; SCHEME; APPROXIMATION;
D O I
10.1016/j.camwa.2019.12.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A fully discrete two-grid modified method of characteristics (MMOC) scheme is proposed for nonlinear variable-order time-fractional advection-diffusion equations in two space dimensions. The MMOC is used to handle the advection-dominated transport and the two-grid method is designed for efficiently solving the resulting nonlinear system. Optimal L-2 error estimates are derived for both the MMOC scheme and the corresponding two-grid MMOC scheme. Numerical experiments are presented to demonstrate the accuracy and the efficiency of the proposed method. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2771 / 2783
页数:13
相关论文
共 44 条
[41]   A GENERALIZED SPECTRAL COLLOCATION METHOD WITH TUNABLE ACCURACY FOR VARIABLE-ORDER FRACTIONAL DIFFERENTIAL EQUATIONS [J].
Zeng, Fanhai ;
Zhang, Zhongqiang ;
Karniadakis, George Em .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (06) :A2710-A2732
[42]   A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model [J].
Zhang, H. ;
Liu, F. ;
Phanikumar, Mantha S. ;
Meerschaert, Mark M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (05) :693-701
[43]   Finite difference methods for the time fractional diffusion equation on non-uniform meshes [J].
Zhang, Ya-nan ;
Sun, Zhi-zhong ;
Liao, Hong-lin .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 265 :195-210
[44]   NUMERICAL METHODS FOR THE VARIABLE-ORDER FRACTIONAL ADVECTION-DIFFUSION EQUATION WITH A NONLINEAR SOURCE TERM [J].
Zhuang, P. ;
Liu, F. ;
Anh, V. ;
Turner, I. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) :1760-1781