Privacy-Preserving Data Visualization using Parallel Coordinates

被引:2
作者
Dasgupta, Aritra [1 ]
Kosara, Robert [1 ]
机构
[1] Univ N Carolina, Charlotte, NC 28223 USA
来源
VISUALIZATION AND DATA ANALYSIS 2011 | 2011年 / 7868卷
关键词
privacy; k-anonymity; visualization; parallel coordinates;
D O I
10.1117/12.872635
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The proliferation of data in the past decade has created demand for innovative tools in different areas of exploratory data analysis, like data mining and information visualization. However, the problem with real-world datasets is that many of their attributes can identify individuals, or the data are proprietary and valuable. The field of data mining has developed a variety of ways for dealing with such data, and has established an entire subfield for privacy-preserving data mining. Visualization, on the other hand, has seen little, if any, work on handling sensitive data. With the growing applicability of data visualization in real-world scenarios, the handling of sensitive data has become a non-trivial issue we need to address in developing visualization tools. With this goal in mind, in this paper, we analyze the issue of privacy from a visualization perspective and propose a privacy-preserving visualization technique based on clustering in parallel coordinates. We also outline the key differences in approach from the privacy-preserving data mining field and compare the advantages and drawbacks of our approach.
引用
收藏
页数:12
相关论文
共 26 条
  • [1] Aggarwal CC, 2001, LECT NOTES COMPUT SC, V1973, P420
  • [2] Aggarwal Gagan, 2005, Journal of Privacy Technology (JOPT)
  • [3] Agrawal R, 2000, SIGMOD REC, V29, P439, DOI 10.1145/335191.335438
  • [4] ANKERST M, 1998, P INT C INF VIS
  • [5] [Anonymous], UC IRVINE MACHINE LE
  • [6] [Anonymous], 2008, P 14 ACM SIGKDD INT, DOI DOI 10.1145/1401890.1401904
  • [7] Uncovering clusters in crowded parallel coordinates visualizations
    Artero, AO
    de Oliveira, MCF
    Levkowitz, H
    [J]. IEEE SYMPOSIUM ON INFORMATION VISUALIZATION 2004, PROCEEDINGS, 2004, : 81 - 88
  • [8] Bu SF, 2007, PROC INT CONF DATA, P671
  • [9] Byun JW, 2007, LECT NOTES COMPUT SC, V4443, P188
  • [10] CIRIANI V, 2007, PRIVACY PRESERVING D, P105