Predicting Catastrophes in Nonlinear Dynamical Systems by Compressive Sensing

被引:237
作者
Wang, Wen-Xu [1 ]
Yang, Rui [1 ]
Lai, Ying-Cheng [1 ,2 ]
Kovanis, Vassilios [3 ]
Grebogi, Celso [2 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
[2] Univ Aberdeen, Kings Coll, Inst Complex Syst & Math Biol, Aberdeen AB24 3UE, Scotland
[3] Sensors Directorate, Wright Patterson AFB, OH 45433 USA
基金
英国生物技术与生命科学研究理事会;
关键词
CRISES; CHAOS;
D O I
10.1103/PhysRevLett.106.154101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An extremely challenging problem of significant interest is to predict catastrophes in advance of their occurrences. We present a general approach to predicting catastrophes in nonlinear dynamical systems under the assumption that the system equations are completely unknown and only time series reflecting the evolution of the dynamical variables of the system are available. Our idea is to expand the vector field or map of the underlying system into a suitable function series and then to use the compressive-sensing technique to accurately estimate the various terms in the expansion. Examples using paradigmatic chaotic systems are provided to demonstrate our idea.
引用
收藏
页数:4
相关论文
共 19 条
[1]  
[Anonymous], 2006, P INT C MATH MADR SP
[2]   Compressive sensing [J].
Baraniuk, Richard G. .
IEEE SIGNAL PROCESSING MAGAZINE, 2007, 24 (04) :118-+
[3]   Periodicity hub and nested spirals in the phase diagram of a simple resistive circuit [J].
Bonatto, Cristian ;
Gallas, Jason A. C. .
PHYSICAL REVIEW LETTERS, 2008, 101 (05)
[4]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[5]  
Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731
[6]   Stable signal recovery from incomplete and inaccurate measurements [J].
Candes, Emmanuel J. ;
Romberg, Justin K. ;
Tao, Terence .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (08) :1207-1223
[7]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379
[8]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[9]   PREDICTING CHAOTIC TIME-SERIES [J].
FARMER, JD ;
SIDOROWICH, JJ .
PHYSICAL REVIEW LETTERS, 1987, 59 (08) :845-848
[10]   CRISES, SUDDEN CHANGES IN CHAOTIC ATTRACTORS, AND TRANSIENT CHAOS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICA D, 1983, 7 (1-3) :181-200