Phenotypic and Methylome Responses to Salt Stress in Arabidopsis thaliana Natural Accessions

被引:9
|
作者
Lin, Xiaohe [1 ]
Zhou, Ming [1 ]
Yao, Jing [1 ]
Li, Qingshun Q. [1 ,2 ]
Zhang, Yuan-Ye [1 ]
机构
[1] Xiamen Univ, Coll Environm & Ecol, Key Lab, Minist Educ Coastal & Wetland Ecosyst, Xiamen, Peoples R China
[2] Western Univ Hlth Sci, Grad Coll Biomed Sci, Pomona, CA USA
来源
基金
中国国家自然科学基金;
关键词
accession-specific; Arabidopsis thaliana; genome-wide DNA methylation; salt stress; whole-genome bisulfite sequencing (WGBS); BODY DNA METHYLATION; RELEVANT TRAITS; R PACKAGE; GENES; PLASTICITY; PLANT; L; ENVIRONMENT; ASSOCIATION; ACTIVATION;
D O I
10.3389/fpls.2022.841154
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Salt stress threatens plant growth, development and crop yields, and has become a critical global environmental issue. Increasing evidence has suggested that the epigenetic mechanism such as DNA methylation can mediate plant response to salt stress through transcriptional regulation and transposable element (TE) silencing. However, studies exploring genome-wide methylation dynamics under salt stress remain limited, in particular, for studies on multiple genotypes. Here, we adopted four natural accessions of the model species Arabidopsis thaliana and investigated the phenotypic and genome-wide methylation responses to salt stress through whole-genome bisulfite sequencing (WGBS). We found that salt stress significantly changed plant phenotypes, including plant height, rosette diameter, fruit number, and aboveground biomass, and the change in biomass tended to depend on accessions. Methylation analysis revealed that genome-wide methylation patterns depended primarily on accessions, and salt stress caused significant methylation changes in similar to 0.1% cytosines over the genomes. About 33.5% of these salt-induced differential methylated cytosines (DMCs) were located to transposable elements (TEs). These salt-induced DMCs were mainly hypermethylated and accession-specific. TEs annotated to have DMCs (DMC-TEs) across accessions were found mostly belonged to the superfamily of Gypsy, a type II transposon, indicating a convergent DMC dynamic on TEs across different genetic backgrounds. Moreover, 8.0% of salt-induced DMCs were located in gene bodies and their proximal regulatory regions. These DMCs were also accession-specific, and genes annotated to have DMCs (DMC-genes) appeared to be more accession-specific than DMC-TEs. Intriguingly, both accession-specific DMC-genes and DMC-genes shared by multiple accessions were enriched in similar functions, including methylation, gene silencing, chemical homeostasis, polysaccharide catabolic process, and pathways relating to shifts between vegetative growth and reproduction. These results indicate that, across different genetic backgrounds, methylation changes may have convergent functions in post-transcriptional, physiological, and phenotypic modulation under salt stress. These convergent methylation dynamics across accession may be autonomous from genetic variation or due to convergent genetic changes, which requires further exploration. Our study provides a more comprehensive picture of genome-wide methylation dynamics under salt stress, and highlights the importance of exploring stress response mechanisms from diverse genetic backgrounds.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Natural Root Cellular Variation in Responses to Osmotic Stress in Arabidopsis thaliana Accessions
    Cajero-Sanchez, Wendy
    Aceves-Garcia, Pamela
    Fernandez-Marcos, Maria
    Gutierrez, Crisanto
    Rosas, Ulises
    Garcia-Ponce, Berenice
    Alvarez-Buylla, Elena R.
    Sanchez, Maria de la Paz
    Garay-Arroyo, Adriana
    GENES, 2019, 10 (12)
  • [2] Dissecting the genetic control of natural variation in salt tolerance of Arabidopsis thaliana accessions
    Katori, Taku
    Ikeda, Akiro
    Iuchi, Satoshi
    Kobayashi, Masatomo
    Shinozaki, Kazuo
    Maehashi, Kenji
    Sakata, Yoichi
    Tanaka, Shigeo
    Taji, Teruaki
    JOURNAL OF EXPERIMENTAL BOTANY, 2010, 61 (04) : 1125 - 1138
  • [3] Transcriptional variation in response to salt stress in commonly used Arabidopsis thaliana accessions
    Chan, Zhulong
    Loescher, Wayne
    Grumet, Rebecca
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2013, 73 : 189 - 201
  • [4] Genetic mapping of the early responses to salt stress in Arabidopsis thaliana
    Awlia, Mariam
    Alshareef, Nouf
    Saber, Noha
    Korte, Arthur
    Oakey, Helena
    Panzarova, Klara
    Trtilek, Martin
    Negrao, Sonia
    Tester, Mark
    Julkowska, Magdalena M.
    PLANT JOURNAL, 2021, 107 (02): : 544 - 563
  • [5] Isolation of molecular markers for salt stress responses in Arabidopsis thaliana
    Pih, KT
    Jang, HJ
    Kang, SG
    Piao, HL
    Hwang, I
    MOLECULES AND CELLS, 1997, 7 (04) : 567 - 571
  • [6] Environmental Heat and Salt Stress Induce Transgenerational Phenotypic Changes in Arabidopsis thaliana
    Suter, Leonie
    Widmer, Alex
    PLOS ONE, 2013, 8 (04):
  • [7] Phenotypic Effects of Salt and Heat Stress over Three Generations in Arabidopsis thaliana
    Suter, Leonie
    Widmer, Alex
    PLOS ONE, 2013, 8 (11):
  • [8] Microarray analysis of transcriptional responses to salt and drought stress in Arabidopsis thaliana
    Ghorbani, Razieh
    Alemzadeh, Abbas
    Razi, Hooman
    HELIYON, 2019, 5 (11)
  • [9] Exploring Natural Variations in Arabidopsis thaliana: Plant Adaptability to Salt Stress
    Lombardi, Marco
    Bellucci, Manuel
    Cimini, Sara
    Locato, Vittoria
    Loreto, Francesco
    De Gara, Laura
    PLANTS-BASEL, 2024, 13 (08):
  • [10] Distinct growth and physiological responses of Arabidopsis thaliana natural accessions to drought stress and their detection using spectral reflectance and thermal imaging
    Klem, Karel
    Mishra, Kumud B.
    Novotna, Katerina
    Rapantova, Barbora
    Hodanova, Petra
    Mishra, Anamika
    Kovac, Daniel
    Urban, Otmar
    FUNCTIONAL PLANT BIOLOGY, 2017, 44 (03) : 312 - 323