Analysis of Some Global Optimization Algorithms for Space Trajectory Design

被引:72
作者
Vasile, M. [1 ]
Minisci, E. [1 ]
Locatelli, M. [2 ]
机构
[1] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland
[2] Univ Parma, Dipartimento Ingn Informat, I-43124 Parma, Italy
关键词
Evolutionary algorithms - Space flight - Ability testing - Global optimization;
D O I
10.2514/1.45742
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper analyzes the performance of some global search algorithms on a number of space trajectory design problems. A rigorous testing procedure is introduced to measure the ability of an algorithm to identify the set of epsilon-optimal solutions. From the analysis of the test results, a novel algorithm is derived. The development of the novel algorithm starts from the redefinition of some evolutionary heuristics in the form of a discrete dynamical system. The convergence properties of this discrete dynamical system are used to derive a hybrid evolutionary algorithm that displays very good performance on the particular class of problems presented in this paper.
引用
收藏
页码:334 / 344
页数:11
相关论文
共 24 条
[1]   N-impulse orbit transfer using genetic algorithms [J].
Abdelkhalik, Ossama ;
Mortari, Daniele .
JOURNAL OF SPACECRAFT AND ROCKETS, 2007, 44 (02) :456-460
[2]  
Adcock CJ, 1997, J ROY STAT SOC D-STA, V46, P261
[3]   Local optima smoothing for global optimization [J].
Addis, B ;
Locatelli, M ;
Schoen, F .
OPTIMIZATION METHODS & SOFTWARE, 2005, 20 (4-5) :417-437
[4]  
[Anonymous], 2001, An Introduction to Genetic Algorithms. Complex Adaptive Systems
[5]  
Battin H., 1999, INTRO MATH METHODS A
[6]  
Chipperfield A., GENETIC C ALGORITHM
[7]  
Clerc M., 2006, Particle Swarm Optimization
[8]  
Di Lizia P., 2004, AO4532 ESA ITT
[9]  
GAGE PJ, 1995, J ASTRONAUT SCI, V43, P59
[10]  
GALOR O, 2004, INTRO STABILITY ANAL