Resilient back propagation learning algorithm for recurrent fuzzy neural networks

被引:17
作者
Mastorocostas, PA [1 ]
机构
[1] Technol & Educ Inst Serres, Dept Informat & Commun, Serres 62124, Greece
关键词
D O I
10.1049/el:20040052
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An efficient training method for recurrent fuzzy neural networks is proposed. The method modifies the RPROP algorithm, originally developed for static neural networks, in order to be applied to dynamic systems. A comparative analysis with the standard back propagation through time is given, indicating the effectiveness of the proposed algorithm.
引用
收藏
页码:57 / 58
页数:2
相关论文
共 5 条
[1]   Empirical evaluation of the improved Rprop learning algorithms [J].
Igel, C ;
Hüsken, M .
NEUROCOMPUTING, 2003, 50 :105-123
[2]   A recurrent self-organizing neural fuzzy inference network [J].
Juang, CF ;
Lin, CT .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (04) :828-845
[3]   A recurrent fuzzy-neural model for dynamic system identification [J].
Mastorocostas, PA ;
Theocharis, JB .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2002, 32 (02) :176-190
[4]   STEEPEST DESCENT ALGORITHMS FOR NEURAL-NETWORK CONTROLLERS AND FILTERS [J].
PICHE, SW .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (02) :198-212
[5]  
RIEDMILLER M, 1993, 1993 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, P586, DOI 10.1109/ICNN.1993.298623